It is undefined because you can’t have 0 as a denominater
G = (7h + 2f + 3c - 17.15)/2
Answer:
C. The distribution for town A is symmetric, but the distribution for
town B is negatively skewed.
Step-by-step Explanation:
From the box plots attached in the diagram below, which shows data of low temperatures for town A and town B for some days, we can compare the shapes of the box plot by visually analysing both box plots and how the data for each town is distributed.
=> For town A, the shape of the box plot is symmetric because both quartiles seem equal, and the median also divides the rectangular box into two equal halves. Both whiskers also appear to be of equal lengths.
The box plot for Town A takes a symmetric shape, and this shows a typical normal distribution of data.
=> On the other hand, Town B data distribution is different. The median seem close to the top half of the box and does not divide the box into equal halves. This shows the distribution is skewed. Since the whisker is shorter from the upper end of the box to the left side, we can infer that the distribution for Town B is skewed to the left, and it is negatively skewed.
=> The right comparison of the shapes of the box plots is "C. The distribution for town A is symmetric, but the distribution for town B is negatively skewed."
Answer:
The volume of the cone is approximately 453.0 cm³
Step-by-step explanation:
The volume of a cone is one third that of a cylinder with the same height and radius. That gives us 1/3 πr²h, where r is radius and h is height.
However, we are not given the height of the cone, but the side length. We can work out the height using the Pythagorean theorem, as we have a right triangle with the height, base radius, and length. You may recall that the Pythagorean theorem states that the square of the hypotenuse of a right triangle is equal to the sum of the squares of it's other two sides:

So we can find the height of the cone with that:

Now that we have the cone's height, we can solve for its volume:

Answer:
60
Step-by-step explanation:
Google "Area of a trapezoid formula" and that will help you with this