1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
2 years ago
6

7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5

Mathematics
2 answers:
Olenka [21]2 years ago
8 0

\begin{gathered} \\\frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + \sqrt{5} b \\ \end{gathered}

\begin{gathered} \\ \frac{( \: 7 + 3 \sqrt{5} \: \: ( 3 - \sqrt{5}) \: \: - 7 - 3 \sqrt{5} \: \: ( 3 + \sqrt{5}) \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 21 - 7 \sqrt{5} \: + 9 \sqrt{5} - 15) \: \: - ( \: 21 + 7 \sqrt{5} \: - 9 \sqrt{5} + 15)\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 6 + 2 \sqrt{5} ) \: \: - ( \: 6 - 2 \sqrt{5} )\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 6 + 2 \sqrt{5} \: \: - \: \: 6 - 2 \sqrt{5} \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{3 {}^{2} - {\sqrt{5} }^{2} } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 9 - 5 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 4 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\  \: \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

we can also write it as ;

\begin{gathered} \\  \: 0 + \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

★ Henceforth, the value of a and b are :

→ a = 0

→ b = 1

daser333 [38]2 years ago
6 0
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

You might be interested in
A stack of 9 different cards are shuffled and spread out face down. If 4 cards are tired face up, how many different 4-card comb
Juliette [100K]

Answer:

126.

Step-by-step explanation:

This is the number of combinations of 4 cards  from 9 cards:

= 9C4

= 9! / 4! 5!.

A quick way of calculating this is  

9*8*7*6

----------- =   9*2*7   =    126 combinations.

4*3*2*1

7 0
3 years ago
In a certain country, the heights and depths of a road are measured in relation to sea level. Sea level has a value of 0. The lo
Bumek [7]
What are the answers?
4 0
2 years ago
Evaluate the following
IRINA_888 [86]

(a) [\frac{9}{2.6}  - \frac{2.5^{2} }{2.5} ]^{2}

Answer:

[\frac{9}{2.6}  - \frac{2.5^{2} }{2.5} ]^{2}

= [\frac{9}{2.6}  - \frac{2.5*2.5 }{2.5} ]^{2}

= [\frac{9}{2.6}  - \frac{2.5}{1} ]^{2}

*canceling 2.5 in numerator and denominator*

= [\frac{9-(2.5)(2.6)}{2.6} ]^2\\*Using L.C.M of 2.6 and 1 which comes out to be '2.6'= [\frac{9-(6.5)}{2.6} ]^2\\= [\frac{2.5}{2.6} ]^2\\*multiplying and dividing by '10'= [\frac{2.5*10}{2.6*10} ]^2\\= [\frac{25}{26} ]^2\\= \frac{25^2}{26^2}\\= \frac{625}{676}\\= 0.925

Properties used:

Cancellation property of fractions

Least Common Multiplier(LCM)

The least or smallest common multiple of any two or more given natural numbers are termed as LCM. For example, LCM of 10, 15, and 20 is 60.

(b) [[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}    ] ^{2}

Answer:

[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}] ^{2}\\

*using [x^{a}]^b = x^{ab}*

= [\frac{3x^{3a}y^{3b}} {-3x^{3a} y^{3b} }] ^{2}        

*Again, using [x^{a}]^b = x^{ab}*

= \frac{3x^{2*3a}y^{2*3b}} {-3x^{2*3a} y^{2*3b} }  \\= (-1)\frac{3x^{6a}y^{6b}} {3x^{6a} y^{6b} }\\[\tex]*taking -1 common, denominator and numerator are equal*[tex]= -(1)\frac{1}{1}\\= -1

Property used: 'Power of a power'

We can raise a power to a power

(x^2)4=(x⋅x)⋅(x⋅x)⋅(x⋅x)⋅(x⋅x)=x^8

This is called the power of a power property and says that to find a power of a power you just have to multiply the exponents.

3 0
3 years ago
A quadratic function is defined by
ella [17]

Answer:

1. The vertex of the graph of the function is (-4, 7)

2. The vertex represents a minimum value

3. The equation represented by the new graph is g(x) = (x + 4)² + 1

Step-by-step explanation:

The given quadratic function is given in vertex  form, y = a·(x - h)² + k, as follows;

g(x) = (x + 4)² + 7

1. By comparing the given quadratic function and the vertex form of a quadratic equation, we have;

a = 1, h = -4, and k = 7

The vertex of the graph of the function, (h, k) = (-4, 7)

2. Given that a = 1 > 0, the graph of the quadratic function opens upwards and the vertex represents a minimum value

3. Shifting the graph 6 units down from where it is now will give;

The vertex = (h, k - 6) = (-4, 7 - 6) = (-4, 1)

h = -b/(2·a), k = (-b²/(4·a) + c = -a·h² + c

c = k + a·h²

Therefore, initial value of the constant term, c = -1×(-4)² + 7 = 23

After the shifting the graph 6 units down, c = 23 - 6 = 17

∴ k = 1 = -a·(-4)² + 17

∴ -16/16 = -1 = -a

a = 1

Therefore, the equation represented by the new graph is g(x) = (x + 4)² + 1.

5 0
3 years ago
Classify this triangle by its sides and angles.
FromTheMoon [43]

Answer:

choice 3) acute and equilateral

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me on this
    13·2 answers
  • How many different groups of 5 shirts can he take
    8·1 answer
  • The function f is defined by f(x)=-x2+2x-7. What is the value of f(-3)?
    9·1 answer
  • Jerome Anthony are reading the same book drumhedz already read 46 pages in feet and additional 7 page per night Cindy has read 2
    14·1 answer
  • Write the equation of a line in slope-intercept form that passes through the given points.
    10·1 answer
  • 30. Joanne has a number of 10c coins and $1 coins in her purse, worth a total value of $6.60. She has one more than three times
    9·1 answer
  • Sophie's current balance in her checking account is $125.89. What is the final balance after the above transactions were complet
    7·1 answer
  • PLEAAAAASE help me if you have heart!!
    9·2 answers
  • Need Help Bro Tryna hurry up and this over with lol
    9·1 answer
  • Drag the tiles to the correct boxes to complete the pairs.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!