1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
2 years ago
6

7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5

Mathematics
2 answers:
Olenka [21]2 years ago
8 0

\begin{gathered} \\\frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + \sqrt{5} b \\ \end{gathered}

\begin{gathered} \\ \frac{( \: 7 + 3 \sqrt{5} \: \: ( 3 - \sqrt{5}) \: \: - 7 - 3 \sqrt{5} \: \: ( 3 + \sqrt{5}) \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 21 - 7 \sqrt{5} \: + 9 \sqrt{5} - 15) \: \: - ( \: 21 + 7 \sqrt{5} \: - 9 \sqrt{5} + 15)\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 6 + 2 \sqrt{5} ) \: \: - ( \: 6 - 2 \sqrt{5} )\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 6 + 2 \sqrt{5} \: \: - \: \: 6 - 2 \sqrt{5} \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{3 {}^{2} - {\sqrt{5} }^{2} } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 9 - 5 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 4 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\  \: \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

we can also write it as ;

\begin{gathered} \\  \: 0 + \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

★ Henceforth, the value of a and b are :

→ a = 0

→ b = 1

daser333 [38]2 years ago
6 0
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

You might be interested in
Can someone please help me solve this? <br><br> 2x+5y=-1 <br><br> -10x-25y=5
fredd [130]

this is system of equations

2x + 5y = -1   times this one by 5 to make the y's opposite

-10x -25y = 5

10x - 25y = -5  (this is it times by 5, now add them)

__________

0 + 0       = 0    

now since everything cancels and both sides are equal it has infinite solutions beaus they are actually the same line.  


3 0
4 years ago
Plz help I will mark branliest
anzhelika [568]

The last one.

........

6 0
3 years ago
At a financial institution, a fraud detection system identifies suspicious transactions and sends them to a specialist for revie
labwork [276]

Answer:

a. E(X) = 54.4

b. E(X) = 2.5

c. P(Y=2) = .0116

Step-by-step explanation:

a.

    E(X) = np = .40 probability * 136 trials = 54.4 blocked transmissions

    To get the expected value, we simply multiply probability times number of trials. You can look at it in simple terms by thinking if there's a 50% chance of flipping heads and you flip a coin twice, in an ideal world you will have .5*2 = 1 head.

b.

    i. Let X represent the number of suspicious transmissions reviewed until finding the first blocked one. We will use a geometric distribution to model the "first" transmission. Whenever we're looking for the "first" time something happens, we use geometric.

   ii. E(X) = 1/p , according to the geometric model.

              = 1/.4 = 2.5.

       We expect that the specialist will review 2.5 suspicious transactions <em>on average </em>before finding the first transmission that will be blocked.

c.

    i. Let Y represent the exact number of blocked transmissions out of 10. We will use a binomial distribution to model the "fixed" number of transmissions. Whenever we're looking for a "fixed" number of times something happens, we use binomial.

    ii. P(Y=k) = (n choose k)(p^k)(q^n-k)

        P(Y=2) = (¹⁰₂)(.4^2)(.6^10-2)

                    = 45 (.4^2)(.6^10-2) = .0016

        As for calculator notation, the n choose k can be accessed on a TI-84 via MATH -> PRB -> nCr. It looks like 10 nCr 2 on the display.

        Hence the probability that two transactions out of ten will be blocked is .0016 by the binomial model.

5 0
4 years ago
Quadrilateral OPQR is inscribed inside a circle as shown below. What is the measure of angle Q? You must show all work and calcu
viktelen [127]
Hello,

Angles y and 3y+8 are supplementaries since the quadrilater is inscribed

y+3y+8=180
==>4y=172
==>y=43 (°)
8 0
3 years ago
Given a term in the geometric sequence and the common ratio find the first five terms the explicit form and the recursive formul
Pani-rosa [81]
A1 = 4
a2 = 5a1 = 5 x 4 = 20
a3 = 5a2 = 5 x 20 = 100
a4 = 5a3 = 5 x 100 = 500
a5 = 5a4 = 5 x 500 = 2,500

Tn = ar^(n-1); where a = 4, r = 5
Tn = 4(5)^(n-1) = 4/5 (5)^n
Explicit formular is Tn = 4/5 (5)^n

Recursive formular is a_{n+1} = 5a_{n-1}
5 0
3 years ago
Other questions:
  • Raj and Aditi like to play chess against each other. Aditi has won 12 of the 20 games so far. They decide to play more games. Ho
    8·2 answers
  • Walter sees a sign on a store window announcing a 25 percent discount on a minimum purchase of $500. What type of discount is th
    13·2 answers
  • Find the area of the triangle that divides the parallelogram in half.​
    13·1 answer
  • I need it in standard form &amp; to be simplified
    7·1 answer
  • 4 minute mile whats the average speed mi/min
    5·2 answers
  • Inequalities help please
    10·1 answer
  • If two angles are supplementary, then they form a linear pair. IS THIS STATEMENT TRUE OR FALSE? WHY?
    7·1 answer
  • Help someone help me please
    11·2 answers
  • The heights of the bars of a histogram correspond to:
    11·1 answer
  • Thank you so much im confused ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!