1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
6

7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5

Mathematics
2 answers:
Olenka [21]3 years ago
8 0

\begin{gathered} \\\frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + \sqrt{5} b \\ \end{gathered}

\begin{gathered} \\ \frac{( \: 7 + 3 \sqrt{5} \: \: ( 3 - \sqrt{5}) \: \: - 7 - 3 \sqrt{5} \: \: ( 3 + \sqrt{5}) \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 21 - 7 \sqrt{5} \: + 9 \sqrt{5} - 15) \: \: - ( \: 21 + 7 \sqrt{5} \: - 9 \sqrt{5} + 15)\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 6 + 2 \sqrt{5} ) \: \: - ( \: 6 - 2 \sqrt{5} )\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 6 + 2 \sqrt{5} \: \: - \: \: 6 - 2 \sqrt{5} \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{3 {}^{2} - {\sqrt{5} }^{2} } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 9 - 5 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 4 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\  \: \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

we can also write it as ;

\begin{gathered} \\  \: 0 + \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

★ Henceforth, the value of a and b are :

→ a = 0

→ b = 1

daser333 [38]3 years ago
6 0
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

You might be interested in
I need help with the bottom question
Sati [7]

Answer:

Step-by-step explanation:

they want to know  a point on the line... that has a gradient ( think slope )  of -1/3  and has the point of (-2,5)  on it. So find the formula for that line

with the point slope formula  y-y1 = m(x - x1)

plug in what we know

y - 5 = - 1/3 (x -(-2))

y - 5 = -1/3(x+2)

y - 5 = -1/3x - 2/3

y = - 1/3x - 2/3 + 5

y = - 1/3x + 4 1/3

y = -1/3x + 13 / 3

Now use your formula to find any new point plug in 1 for x ( b/c it's easy)

y = 12/3   when x= 1.  so ( 1, 4 )  is another point on the line  :)

don't forget to show your work  :P

5 0
3 years ago
36 is what percent less than 60
mestny [16]
36/60 = 18 / 30 = 9 / 15 = 3/5 ,  so 36 is 60% of 60, or 40% less than 60. This question is worded oddly, is that what you're looking for?
5 0
3 years ago
The Practical Investment Club has 13 members with equal shares.  Their total investment to date is $24,689.55.  How much is the
Sati [7]
Number of members = 13
Total investment = $24,689.55

Since they have equal shares, dividing the total investment with number of members gives shares value per member.

That is
Value of shares per member = $24,689.55/13 = $1,899.20
4 0
4 years ago
Read 2 more answers
Find the area that the curve encloses and then sketch it.<br> r = 3 + 8 sin(6)
Rudiy27

Answer:

A=41\pi\: \text{units}^2\approxA\approx128.8053\:\text{units}^2

Step-by-step explanation:

I assume you mean r=3+8\sin\theta:

Use the formula \displaystyle A=\int\limits^a_b \frac{1}{2} {r(\theta)^2} \, d\theta where a and b are the lower and upper bounds and r(\theta) is the equation of the polar curve.

Since the graph is symmetrical about the line \displaystyle \theta=\frac{\pi}{2}, let the bounds of integration be \displaystyle \biggr(-\frac{\pi}{2},\frac{\pi}{2}\biggr) to find half the area of the curve, and then find twice of that area:

\displaystyle A=\int\limits^a_b \frac{1}{2} {r(\theta)^2} \, d\theta\\\\A=2\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \frac{1}{2} {(3+8\sin\theta)^2} \, d\theta\\\\A=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} 9+48\sin\theta+64\sin^2\theta \, d\theta\\\\A=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} 9+48\sin\theta+64\biggr(\frac{1-\cos2\theta}{2} \biggr) \, d\theta\\\\\\A=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} (9+48\sin\theta+32-32\cos2\theta) \, d\theta

\displaystyle A=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}} (41+48\sin\theta-32\cos2\theta) \, d\theta\\\\A=41\theta-48\cos\theta-16\sin2\theta\biggr|^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\\\\

A=\biggr[41\biggr(\frac{\pi}{2}\biggr)-48\cos\biggr(\frac{\pi}{2}\biggr)-16\sin2\biggr(\frac{\pi}{2}\biggr)\biggr]-\biggr[41\biggr(-\frac{\pi}{2}\biggr)-48\cos\biggr(-\frac{\pi}{2}\biggr)-16\sin2\biggr(-\frac{\pi}{2}\biggr)\biggr]\\\\A=\biggr[\frac{41\pi}{2}-24\sqrt{2}\biggr]-\biggr[-\frac{41\pi}{2}+24\sqrt{2}\biggr]\\ \\A=41\pi\\\\A\approx128.8053

Thus, the area of the curve is 41π square units. See below for a graph of the curve and its shaded area.

7 0
3 years ago
If angle A = 34°, angle B = (x-5)°, angle C = 4y °, what is the value of y?
nevsk [136]
180-34=146
146-5=141
ratio=1:4
1+4=5
141÷5=28.2
x=28.2
y=112.8

I may be wrong, ask for more opinions
-
--- O
-
4 0
3 years ago
Read 2 more answers
Other questions:
  • Suzanne has purchased a car with a list price of $23,860. She traded in her previous car, which was a Dodge in good condition, a
    10·1 answer
  • How to solve 5 - 1/2 (c - 6) = 4??<br><br> Question 4D
    11·1 answer
  • Estimate the value of 52/ to the nearest whole number
    8·1 answer
  • Hot to do 18/32 show your work
    13·1 answer
  • Plz help me with this equation
    6·2 answers
  • dominic bought a new alram clock that was on sale for 18,75 if this price represents a 30% discount from the original price what
    10·1 answer
  • Amy has $250 in her account. She withdraws (take out) $25 each week. Mary has $100 in her account. She deposits $15 each week. A
    10·1 answer
  • What is the binary number for 18​
    14·2 answers
  • How do you get 22/100 out of 11/50?
    7·1 answer
  • What is 36:52 simplest form
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!