1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
2 years ago
6

7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5

Mathematics
2 answers:
Olenka [21]2 years ago
8 0

\begin{gathered} \\\frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } = a + \sqrt{5} b \\ \end{gathered}

\begin{gathered} \\ \frac{( \: 7 + 3 \sqrt{5} \: \: ( 3 - \sqrt{5}) \: \: - 7 - 3 \sqrt{5} \: \: ( 3 + \sqrt{5}) \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 21 - 7 \sqrt{5} \: + 9 \sqrt{5} - 15) \: \: - ( \: 21 + 7 \sqrt{5} \: - 9 \sqrt{5} + 15)\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{( \: 6 + 2 \sqrt{5} ) \: \: - ( \: 6 - 2 \sqrt{5} )\: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 6 + 2 \sqrt{5} \: \: - \: \: 6 - 2 \sqrt{5} \: }{(3 + \sqrt{5}) \: \:(3 + \sqrt{5}) } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{3 {}^{2} - {\sqrt{5} }^{2} } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 9 - 5 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\ \frac{\: 4 \sqrt{5} \: \: }{ \: \: \: \: 4 \: \: \: } = a + \sqrt{5} \: b\\ \end{gathered}

\begin{gathered} \\  \: \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

we can also write it as ;

\begin{gathered} \\  \: 0 + \sqrt{5} = a + \sqrt{5} \: b\\ \end{gathered}

★ Henceforth, the value of a and b are :

→ a = 0

→ b = 1

daser333 [38]2 years ago
6 0
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

You might be interested in
Substitution for:<br> X-5y=10<br> 2x-10y=20
sergey [27]
Since you need an isolated variable to use the substitution method, we need to re-arrange one of the equations. This will probably be easiest to do with the first one.
Add 5y to both sides of the first equation.
x=10+5y
Now, in the second equation, put in 10+5y in any spot that has an x.
2(10+5y)-10y=20
Distribute the 2 to both numbers in the parenthesis.
20+10y-10y=20
Combine like terms.
20=20
This means that the two equations are actually the same. You can see this if you multiply the whole first equation by 2
2(x-5y=10)
2x-10y=20, which is the same as the second equation. Therefore, the two equations are actually the same one.
5 0
3 years ago
A line passes through (4,5) and (8,9). which equation best represents the line?
telo118 [61]
Y=x+1 would be the best equation that represents the line
3 0
4 years ago
Find the measure of the indicated angle. Round to the nearest degree.
yuradex [85]
Angle=28.1416
Rounded=28


hope this helps




pls give brainliest!
8 0
3 years ago
Math help plsss brainliest answer???
Shalnov [3]
Hello,


See this file.
==============
Download xls
7 0
3 years ago
Answer for 35 points but work out problems please
OlgaM077 [116]

IDK!!!!! EXPLAIN AND SPECIFY!!!!

8 0
3 years ago
Other questions:
  • Use the discriminant to determine how many X intercepts the graph of the equation has
    5·1 answer
  • 7 times as many as 9 is
    6·1 answer
  • What is the value of f(x) = 36x when x =1/2
    9·1 answer
  • Just the answer please
    13·2 answers
  • What is T = 3U/E solve for U
    6·1 answer
  • identify all the pionts that would lie on the line y=1/3x + 9. answer choices A: 0,9 B: -9,6 C: 3,10 D: 12,-5
    7·1 answer
  • HELP PLS I WILL MARK BRAINLIEST, DUE TODAYY 100 POINTS!!!!!!!!!
    7·1 answer
  • Write an equivalent expression to m-(8-3m) without parentheses. Write in the boxes
    14·2 answers
  • The histogram shows the prices of dinners at a local fine-dining restaurant.
    6·2 answers
  • Find the length of arc AD. Use 3.14 for .
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!