Answer:
On average, cars enter the highway during the first half hour of rush hour at a rate 97 per minute.
Step-by-step explanation:
Given that, the rate R(t) at which cars enter the highway is given the formula

The average rate of car enter the highway during first half hour of rush hour is the average value of R(t) from t=0 to t=30.

![=[100(t-0.0001\frac{t^3}{3})]_0^{30}](https://tex.z-dn.net/?f=%3D%5B100%28t-0.0001%5Cfrac%7Bt%5E3%7D%7B3%7D%29%5D_0%5E%7B30%7D)
![=100[(30-0.0001\frac{30^3}{3})-(0-0.0001\frac{0^3}{3})]](https://tex.z-dn.net/?f=%3D100%5B%2830-0.0001%5Cfrac%7B30%5E3%7D%7B3%7D%29-%280-0.0001%5Cfrac%7B0%5E3%7D%7B3%7D%29%5D)
=2901
The average rate of car is 

=97
On average, cars enter the highway during the first half hour of rush hour at a rate 97 per minute.
You would turn the 15% into a decimal which is .15 then multiply .15 by 4.25. After multiplying those together add 4.25 to the answer.
Answer:
Step-by-step explanation:
ok im not sure if this is it but 148.41315910
Answer:
The Answer is 96 .
Step-by-step explanation:
i hoped it's helpful
thank you ☺️☺️☺️