![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ a_n=2-5(n-1)\implies a_n=\stackrel{\stackrel{a_1}{\downarrow }}{2}+(n-1)(\stackrel{\stackrel{d}{\downarrow }}{-5})](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%20%5C%5C%5C%5C%20a_n%3Da_1%2B%28n-1%29d%5Cqquad%20%5Cbegin%7Bcases%7D%20n%3Dn%5E%7Bth%7D%5C%20term%5C%5C%20a_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%20d%3D%5Ctextit%7Bcommon%20difference%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20a_n%3D2-5%28n-1%29%5Cimplies%20a_n%3D%5Cstackrel%7B%5Cstackrel%7Ba_1%7D%7B%5Cdownarrow%20%7D%7D%7B2%7D%2B%28n-1%29%28%5Cstackrel%7B%5Cstackrel%7Bd%7D%7B%5Cdownarrow%20%7D%7D%7B-5%7D%29)
so, we know the first term is 2, whilst the common difference is -5, therefore, that means, to get the next term, we subtract 5, or we "add -5" to the current term.

just a quick note on notation:
![\bf \stackrel{\stackrel{\textit{current term}}{\downarrow }}{a_n}\qquad \qquad \stackrel{\stackrel{\textit{the term before it}}{\downarrow }}{a_{n-1}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{current term}}{a_5}\qquad \quad \stackrel{\textit{term before it}}{a_{5-1}\implies a_4}~\hspace{5em}\stackrel{\textit{current term}}{a_{12}}\qquad \quad \stackrel{\textit{term before it}}{a_{12-1}\implies a_{11}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_n%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bthe%20term%20before%20it%7D%7D%7B%5Cdownarrow%20%7D%7D%7Ba_%7Bn-1%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_5%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B5-1%7D%5Cimplies%20a_4%7D~%5Chspace%7B5em%7D%5Cstackrel%7B%5Ctextit%7Bcurrent%20term%7D%7D%7Ba_%7B12%7D%7D%5Cqquad%20%5Cquad%20%5Cstackrel%7B%5Ctextit%7Bterm%20before%20it%7D%7D%7Ba_%7B12-1%7D%5Cimplies%20a_%7B11%7D%7D)
Isolate the variable by dividing each side by factors that don’t contain the variable.
X = -2
Hope this helps!
Have a great day!
Answer:
2 I guess or what you mean with replace
Step-by-step explanation:
but you replace it you still have the 5 apple so not sure
Answer:
See description below.
Step-by-step explanation:
An inequality is an equation with more than one solution and they use <, >,
or
. There are a number of ways to work with inequalities.
Solving: To solve inequalities in one variable, treat it just like an equation. Solve using inverse operations. If you divide or multiply by a -1 then be sure to flip the sign. For example, if you have > then it becomes <.
Graphing on a number line: To graph inequalities in one variable, use a number line. Plot a point on the number line with an open circle then an arrow pointing toward the solution set. If you have an equal to, you would shade in the open circle.
Solving: To solve inequalities in two variables, you need a system meaning more than one. You solve it like a system of equations by graphing.
Graphing: To graph inequalities with two variables, graph each in y=mx+b form using the y-intercept and slope. Connect the points with a dashed line unless equal to. Equal to inequalities have a solid line. To show the solution set, shade the side of the inequality which (x,y) points make it true. To find this, test a point by substituting into the inequalities.