Answer:
because you are a living organism. you also have feeling.
Answer:

Explanation:
Hello,
In this case, we use the Boyle's law which allows us to understand the volume-pressure behavior as an inversely proportional relationship:

Thus, solving for the final volume, once the pressure changes, we obtain:

Best regards.
<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
If the reaction is a chemical change, new substances with different properties and identities are formed. This may be indicated by the production of an odor, a change in color or energy, or the formation of a solid.
Answer:
7,01 g of indole-3-acetic acid
Explanation:
The milimolar concentration (mM) is defined as the ratio of milimoles per Liter of solution. 400mM means 400mmoles / L that is the same of <em>0,4mol / L</em>
100mL are <em>0,1L</em>. Using these values:
0,1L × (0,4mol / L ) = 0,04moles of indole-3-acetic acid.
As the MW of the molecule is 175,2 g/mol:
0,04mol × (175,2g / mol) = <em>7,01 g of indole-3-acetic acid</em>
<em></em>
Thus, <em>you need 7,01 g of indole-3-acetic acid to generate your solution</em>.
I hope it helps!