464 g radioisotope was present when the sample was put in storage
<h3>Further explanation</h3>
Given
Sample waste of Co-60 = 14.5 g
26.5 years in storage
Required
Initial sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Half-life of Co-60 = 5.3 years
Input the value :

<u>Answer:</u> The volume of barium chlorate is 195.65 mL
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

Given mass of barium chlorate = 25.0 g
Molar mass of barium chlorate = 304.23 g/mol
Molarity of solution = 0.420 mol/L
Volume of solution = ?
Putting values in above equation, we get:

Hence, the volume of barium chlorate is 195.65 mL
Answer:
The statement describes a process involved in the evolution of Earth’s early atmosphere would be:
Cyanobacteria transformed carbon dioxide in the atmosphere into oxygen during photosynthesis
Hope it helped :3
Answer: Uranium enrichment. Uranium is used to fuel nuclear reactors; however, uranium must be enriched before it can be used as fuel. Enriching uranium increases the amount of uranium-235 (U235) that can sustain the nuclear reaction needed to release energy and produce electricity at a nuclear power plant.
The temperature of a reaction causes its rate of reaction to increase because the heat inputted into the solution excites the electrons that make up the solution, therefore making them move faster, colliding more often with other molecules of the solution. This increase in collision rates causes the rate of reaction to increase.