1) Chemical equation:
2CO + O2 ---> 2CO2
2) molar ratios 2 moles CO : 1 mol O2 : 2 moles CO2.
3) When temperature and pressure is kept constant, the molar ratios are equal to the volume ratios.
So, at the same temperature and pressure conditions (standard) you ca state
2 L CO : 1 LO2 : 2 L CO2
=> 2L CO : 2 L CO2 => 1L CO : 1 L CO2.
So, 1 liter of CO2 is produced when 1 liter of CO reacts with excess O2.
5 moles.
think about the ratio of moles of iron oxide (Fe2O3) and iron (Fe) in that balanced chemical equation, which is 1:2, respectively. if there are 10 moles of Fe, you would divide that by 2 to get the number of moles of Fe2O3.
The answer is potassium magnate
It will have 35 ''electrons'' . Basically the number of protons in the nucleus of an atom is always equal to the number of electrons but its just that protons are positively charged and electrons are negatively charged. <span />
Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar