Answer:

Step-by-step explanation:

Answer:
A. 
B doesn't work because only positive 7 would be a possible value. Negative numbers cubed get a negative answer.
There are 5280 ft in a mile. 55*5280=290400. So the car is travelling 290,400 ft/hour
just a quick clarification, tis usually -4.9 and that's a rounded number to reflect earth's gravity on an object in motion, but -5 is close enough :)
![\bf ~~~~~~\textit{initial velocity in meters} \\\\ h(t) = -4.9t^2+v_ot+h_o \quad \begin{cases} v_o=\textit{initial velocity}\\ \qquad \textit{of the object}\\ h_o=\textit{initial height}\\ \qquad \textit{of the object}\\ h=\textit{object's height}\\ \qquad \textit{at "t" seconds} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%20in%20meters%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-4.9t%5E2%2Bv_ot%2Bh_o%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Ctextit%7Binitial%20velocity%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h_o%3D%5Ctextit%7Binitial%20height%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bof%20the%20object%7D%5C%5C%20h%3D%5Ctextit%7Bobject%27s%20height%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bat%20%22t%22%20seconds%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\bf h(x)=-5(\stackrel{\mathbb{F~O~I~L}}{x^2-8x+16})+180\implies h(x)=-5x^2+40x-80+180 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill h(x)=-5x^2+\stackrel{\stackrel{v_o}{\downarrow }}{40} x+\stackrel{\stackrel{h_o}{\downarrow }}{\boxed{100}}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20h%28x%29%3D-5%28%5Cstackrel%7B%5Cmathbb%7BF~O~I~L%7D%7D%7Bx%5E2-8x%2B16%7D%29%2B180%5Cimplies%20h%28x%29%3D-5x%5E2%2B40x-80%2B180%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20h%28x%29%3D-5x%5E2%2B%5Cstackrel%7B%5Cstackrel%7Bv_o%7D%7B%5Cdownarrow%20%7D%7D%7B40%7D%20x%2B%5Cstackrel%7B%5Cstackrel%7Bh_o%7D%7B%5Cdownarrow%20%7D%7D%7B%5Cboxed%7B100%7D%7D~%5Chfill)
Answer:
Correct option: third one -> 11.5 m3
Step-by-step explanation:
To find the volume of the ramp, first we need to find the volume of the rectangular prism and the volume of the triangular prism:
V_rectangular = 4m * 2m * 1m = 8 m3
V_triangular = (2m * 3.5m * 1m) / 2 = 3.5 m3
Now, to find the volume of the ramp, we just need to sum both volumes:
V_total = V_rectangular + V_triangular = 8 + 3.5 = 11.5 m3
Correct option: third one.