1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grandymaker [24]
2 years ago
6

Differentiate :

Csqrt%7B2x%2B7%7D%7D" id="TexFormula1" title="\mathsf {y = cos^{-1}\frac{x}{2} \div \sqrt{2x+7}}" alt="\mathsf {y = cos^{-1}\frac{x}{2} \div \sqrt{2x+7}}" align="absmiddle" class="latex-formula">
Mathematics
2 answers:
mario62 [17]2 years ago
7 0

Answer:

\dfrac{dy}{dx}=-\dfrac{2x+7+\arccos\left(\dfrac{x}{2}\right)\sqrt{4-x^2}}{(2x+7)\sqrt{4-x^2}\sqrt{2x+7}}

Step-by-step explanation:

<u>Quotient Rule</u>

\textsf{If }\:\:y=\dfrac{u}{v} \:\textsf{ then}:

\implies \dfrac{dy}{dx}=\dfrac{v \dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}

Given equation:

y=\dfrac{\arccos\left(\dfrac{x}{2}\right)}{\sqrt{2x+7}}

To differentiate the given equation, apply the Quotient Rule:

\textsf{Let }\:u=\arccos\left(\dfrac{x}{2}\right)

\textsf{If }y=\arccos x \implies \dfrac{dy}{dx}=-\dfrac{1}{\sqrt{1-x^2}}

\begin{aligned}\implies u=\arccos \left(\dfrac{x}{2}\right) \implies \dfrac{du}{dx}& =-\dfrac{1}{\sqrt{1- \left(\dfrac{x}{2}\right)^2}}\dfrac{d}{dx}\left(\dfrac{x}{2}\right)\\\\& =-\dfrac{1}{\sqrt{1- \left(\dfrac{x}{2}\right)^2}} \cdot \dfrac{1}{2}\\\\ & = -\dfrac{1}{2\sqrt{1- \left(\dfrac{x}{2}\right)^2}}\\\\& =-\dfrac{1}{2\sqrt{\dfrac{4-x^2}{4}}}\\\\& =-\dfrac{1}{\dfrac{2\sqrt{4-x^2}}{2}} \\\\ & = -\dfrac{1}{\sqrt{4-x^2}}\end{aligned}

\textsf{Let }\:v=\sqrt{2x+7}=(2x+7)^{\frac{1}{2}}

\begin{aligned}\implies \dfrac{dv}{dx} & =\dfrac{1}{2}(2x+7)^{-\frac{1}{2}} \cdot 2\\\\ & = (2x+7)^{-\frac{1}{2}}\\\\ & = \dfrac{1}{\sqrt{2x+7}}\end{aligned}

Therefore:

\implies \dfrac{dy}{dx}=\dfrac{-\dfrac{\sqrt{2x+7}}{\sqrt{4-x^2}}-\dfrac{\arccos\left(\dfrac{x}{2}\right)}{\sqrt{2x+7}}}{(\sqrt{2x+7})^2}

\implies \dfrac{dy}{dx}=\dfrac{-\dfrac{\sqrt{2x+7}}{\sqrt{4-x^2}}-\dfrac{\arccos\left(\dfrac{x}{2}\right)}{\sqrt{2x+7}}}{2x+7}

\implies \dfrac{dy}{dx}=\dfrac{-\dfrac{\sqrt{2x+7}\sqrt{2x+7}}{\sqrt{4-x^2}\sqrt{2x+7}}-\dfrac{\arccos\left(\dfrac{x}{2}\right)\sqrt{4-x^2}}{\sqrt{4-x^2}\sqrt{2x+7}}}{2x+7}

\implies \dfrac{dy}{dx}=\dfrac{-\dfrac{(2x+7)+\arccos\left(\dfrac{x}{2}\right)\sqrt{4-x^2}}{\sqrt{4-x^2}\sqrt{2x+7}}}{2x+7}

\implies \dfrac{dy}{dx}=-\dfrac{(2x+7)+\arccos\left(\dfrac{x}{2}\right)\sqrt{4-x^2}}{\sqrt{4-x^2}\sqrt{2x+7}}}\times\dfrac{1}{2x+7}

\implies \dfrac{dy}{dx}=-\dfrac{2x+7+\arccos\left(\dfrac{x}{2}\right)\sqrt{4-x^2}}{(2x+7)\sqrt{4-x^2}\sqrt{2x+7}}

Jobisdone [24]2 years ago
5 0

Refer to the attachment for calculation

\underline{\boxed{\bf \dfrac{dy}{dx}=\dfrac{-1}{\sqrt{-2x^3-7x^2+8x+28}}-\dfrac{cos^{-1}\dfrac{x}{2}}{\sqrt{(2x+7)^3}}}}

You might be interested in
Factor completely.<br><br> x2+2x−24<br><br> Enter your answer in the box.
sweet [91]
We can factor using the AC method.
Doing that... we get the answer
(x-4)(x+6)

Have a nice afternoon!
~Brooke❤️
8 0
4 years ago
Read 2 more answers
Answer two questions about Equations A and B:
tia_tia [17]

Answer:

1. c) Add/ Subtract the same quantity to/from both sides

2) Yes

Step-by-step explanation:

Answer two questions about Equations A and B:

A. 3x – 1= 7

B. Зx = 8

1) To get Equation B from Equation A we need to take the following steps

A. 3x – 1 = 7

We add one to both sides

3x - 1 + 1 = 7 + 1

3x - 0 = 8

3x = 8

Option c is the correct option.

2) We are given Equations:

A. 3x – 1= 7

B. Зx = 8

3x - 1 = 7 = 3x = 8

3x = 7 + 1 = 3x = 8

3x = 8 = 3x = 8

Therefore, we can say, Yes, Equation A is equivalent to Equation B, hence they have the same solution.

8 0
3 years ago
A. 1 1/2<br><br> B.-3 3/8<br><br> C.3 3/8<br><br> D. -1 1/2
adell [148]

\implies {\blue {\boxed {\boxed {\purple {\sf { \: A. \:1 \frac{1}{2} }}}}}}

\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

- 2  \frac{1}{4}  \div ( - 1 \frac{1}{2} )

➼ \:  \frac{ - 9}{4}  \div(  \frac{ - 3}{2} )

➼ \:  \frac{ - 9}{4}  \times  \frac{ - 2}{3}

➼ \: \frac{ - 9 \times  - 2}{4 \times 3}

➼ \:  \frac{18}{12}

➼ \:  \frac{3}{2}

➼ \: 1  \frac{1}{2}

\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{.}}}}}

3 0
3 years ago
Use Transformation to solve the equation.
nikitadnepr [17]

Hey!

---------------------------------------------------

Question #1:

b + 0.6 = -1

b + 0.6 - 0.6 = -1 - 0.6

b = -1.6

Answer:

\boxed{ \bf b~=~-1.6}

---------------------------------------------------

Question #2:

y - 0.6 = -1.8

y + (-0.6) + 0.6 = 1.8 + 0.6

y = -1.2

Answer:

\boxed{ \bf y~=~-1.2}

---------------------------------------------------

Question #3:

n + 11.5 = -29

n + 11.5 - 11.5 = -29 - 11.5

n = -40.5

Answer:

\boxed{ \bf n~=~-40.5}

---------------------------------------------------

Question #4:

e - 14.4 = -20.8

e - 14.4 + 14.4 = -20.8 + 14.4

e = -6.4

Answer:

\boxed{ \bf e~=~-6.4}

---------------------------------------------------

Hope This Helped! Good Luck!

8 0
4 years ago
PLEASE HELP PLEASEEEEEEEEEEEEEEEEE​
viva [34]
The answer would be D=2
7 0
3 years ago
Read 2 more answers
Other questions:
  • I need help fast with this! please (14 points)
    8·1 answer
  • Can you help with this questions: 95% of what is 57?
    13·1 answer
  • 3. Describe the graph of the function<br> y = x - 1+ 4
    8·1 answer
  • How many solutions are there to the equation below 3x-10(x-2)=13-7x
    13·1 answer
  • Let B1W2 denote the outcome that the first ball drawn is B1 and the second ball drawn is W2. Because the first ball is replaced
    7·1 answer
  • Can someone help me please
    15·2 answers
  • Simplify (3+4i)-(-1-4i)
    14·1 answer
  • Determine which postulate can be used to prove the triangles are congruent then identify the valid congruency statement.
    8·1 answer
  • Y - x= 4 what the answer?
    12·2 answers
  • PLZ PLZ PLZ HELP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!