1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
2 years ago
11

Simplify each expression and state whether each is a volume, an area, or neither.

Mathematics
1 answer:
4vir4ik [10]2 years ago
4 0

a. 2n^4b, neither a volume nor an area

b. 2Iw + 2wh + 2Ih, It is an area

c. 80 y^4, neither a volume nor an area

<h3>How to simply the algebraic expressions</h3>

a. n(4) 2 x b

n * n * n* n* 2 * b

2n^4b

It is neither an area nor a volume

b.  lw+lw+wh+wh+lh+lh

Collect like terms

2Iw + 2wh + 2Ih

It is an area

c. 8y2(10y2)
8y^2 * 10 * y^2

80 y^4

It is neither a volume nor an area

Thus, the expressions are simplified as a. 2n^4b, b. 2Iw + 2wh + 2Ih, c. 80 y^4

Learn more about algebraic expressions here:

brainly.com/question/4344214

#SPJ1

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
What set of transformations is performed on triangle ABC to form triangle A′B′C′?
Simora [160]

Answer: A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin .

Step-by-step explanation:

From the given figure, the coordinates of ΔABC are A(-3,4), B(-3,1), C(-2,1) and the coordinates of ΔA'B'C' are A'(3,1), B'(3,4), C'(2,4).

When, a translation of 5 units down is applied to  ΔABC, the coordinates of the image will be

Then applying 180° counterclockwise rotation about the origin, the coordinates of the image will be :-

which are the coordinates of ΔA'B'C'.

Hence, the set of transformations is performed on triangle ABC to form triangle A’B’C’ is " A translation 5 units down followed by a 180-degree counterclockwise rotation about the origin ".

4 0
4 years ago
The city buses that run in your neighborhood stop every 12 minutes .The first bus arrives at 5:00 am for passengers.You get to t
Irina-Kira [14]

Answer:

Therefore you will have to wait 11 minutes.

Step-by-step explanation:

Find the number of minutes between 5:00am and 8:37am

60 mins in an hour.

8-5=3 hours

60x3=180+37=217 minutes

Divide 217 by 12 to see how many bus stops have already been made

217/12=18

18*12=216

217-216=1 minute

12-1=11 minutes



Hope this helps!

8 0
3 years ago
A tree that is next to a telephone pole is 15 feet tall and casts a shadow 4 feet long.
mestny [16]

Answer:

24

Step-by-step explanation:

15 =4

15x 6=90

4x6=24

5 0
3 years ago
Read 2 more answers
What is 5/8 with a denominator of 24?
Arturiano [62]

Answer:

Step-by-step explanation:

you multiply 8*3 to get 24 so you do the same to 5. so 5*3 = 15 so 15/24

4 0
3 years ago
Other questions:
  • Triangle FGH is an equilateral triangle with sides measuring units. What is the height of the triangle? GR= units
    14·2 answers
  • What is nine and forty-two hundredths
    7·1 answer
  • What was the total ridden by all of the children 1/5+2/5+3/5+4/5+1
    8·1 answer
  • Solve the problems below. Please answer with completely simplified exact value(s) or expression(s). Given: ΔАВС, m∠ACB = 90 CD ⊥
    6·1 answer
  • Order theses numbers least to greastest 3.18 3.1 3.108 2.1952
    14·1 answer
  • Mrs. Summer's third grade class is putting on a play. If she has 13 1/8 yards of fabric, and each student needs 7/8 of a yard fo
    14·2 answers
  • It takes Franklin 14 hours to make a 200-square-foot cement
    6·1 answer
  • A 5-pound bag of cat food costs $11.25.What is the unit price of the cat food in dollars per pound?
    9·2 answers
  • If 3 cookies cost $2:35.How much is the cost of 1 cookie?How much is the cost of 4 cookies?
    13·2 answers
  • Madelyn is 1.85 meters tall. At 12 noon, she measures the length of a tree's shadow to be 39.75 meters. She stands 34.9 meters a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!