Answer:
Acceleration will be 
Explanation:
We have given initial speed of the car is 70 km/hr
We know that 1 km = 1000 m
And 1 hour = 3600 sec
So 
It is given that car stops in 12 sec
So final speed of the car v = 0 m/sec
Time t = 12 sec
From first equation of motion v = u+at
So 
( negative sign indicates that speed of the car will constantly decrease )
The answer is always true a
Answer:
A
Explanation:
When friction slows a sliding block, <u>the kinetic energy of the block is transformed into internal energy
.</u>
<em>The frictional movement of two surfaces over one another leads to the conversion of some of their kinetic energies to another energy - heat or thermal energy. Hence, the temperatures of the objects are raised in the process. </em>
<u>Therefore, when a sliding block is slowed down due to friction, some of the kinetic energy of the block would be transformed into internal energy in the form of heat.</u>
The correct option is A.
We know, Potential Energy = Force * Height
Here, F = 40 N
h = 5 m
Substitute their values,
U = 40 * 5
U = 200 J
In short, Your Answer would be Option A
Hope this helps!
Answer:
x = 9.32 cm
Explanation:
For this exercise we have an applied torque and the bar is in equilibrium, which is why we use the endowment equilibrium equation
Suppose the counterclockwise turn is positive, let's set our reference frame at the left end of the bar
- W l / 2 - W_{child} x + N₂ l = 0
x =
1)
now let's use the expression for translational equilibrium
N₁ - W - W_(child) + N₂ = 0
indicate that N₂ = 4 N₁
we substitute
N₁ - W - W_child + 4 N₁ = 0
5 N₁ -W - W_{child} = 0
N₁ = ( W + W_{child}) / 5
we calculate
N₁ = (450 + 250) / 5
N₁ = 140 N
we calculate with equation 1
x = -250 1.50 + 4 140 3) / 140
x = 9.32 cm