Answer:
the extension recorded by the student would be smaller than the actual extension of the spring
Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .
Answer:
θ = 20.9 rad
Explanation:
In a blender after a short period of acceleration the blade is kept at a constant angular velocity, for which we can use the relationship
w = θ / t
θ = w t
if we know the value of the angular velocity we can find the angular position, we must remember that all the angles must be in radians
suppose that the angular velocity is w = 10 rpm, let us reduce to the SI system
w = 10 rpm 
= 1,047 rads
let's calculate
θ = 1,047 20
θ = 20.9 rad