Answer : 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Solution : Given,
Mass of Cu = 300 g
Molar mass of Cu = 63.546 g/mole
Molar mass of = 183.511 g/mole
- First we have to calculate the moles of Cu.
The moles of Cu = 4.7209 moles
From the given chemical formula, we conclude that the each mole of compound contain one mole of Cu.
So, The moles of Cu = Moles of = 4.4209 moles
- Now we have to calculate the mass of .
Mass of = Moles of × Molar mass of = 4.4209 moles × 183.511 g/mole = 866.337 g
Mass of = 866.337 g = 0.8663 Kg (1 Kg = 1000 g)
Therefore, 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:
If you want to study two different states, an initial state 1 and a final state 2, the following is true:
<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:
Solving:
<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults
Why does magma composition change during fractional crystallization? Different elements in the magma form crystals at different rates, leaving behind more of the unused elements. ... The crystals are denser than the magma.
the compounds in which phosphorous posses the highest possible oxidation have to mention here.
The species in which phosphorous have the highest oxidation state are: H₃PO₄, P₂O₅, PCl₅
The possible oxidation state of phosphorous is III and V. The highest oxidation state is V. There are several compounds in which phosphorous posses the +5 oxidation state. Like- Phosphoric acid (H₃PO₄), phosphorous pentoxide (P₂O₅), Phosphorous chloride (PCl₅) etc.
The oxidation state of an element depends upon the valence electron the valence shell of phosphorous is 3s² 3p³. Thus there are 5 electrons, as it has vacant 3d orbital thus it can easily form compound having +5 oxidation state.
Answer:
The mass of the products left in the test tube will be less than that of the original reactants.
Explanation
The equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
1.0 3.0 3.9 0.1
Assume you started with 1.0 g of Mg.
It will react with 3.0 g of HCl to form 3.9 g of MgCl2 and 0.1 g of H2
.
Mass of reactants = mass of products
1.0 g + 3.0 g = 3.9 g + 0.1 g
4.0 g = 4.0 g
The Law of Conservation of Mass is obeyed.
However, your test tube and its contents will weigh 0.1 g less than it did before the reaction.
Does that contradict the Law of Conservation of Mass? It does not.
One of the products was the gas, hydrogen, and it escaped from the test tube. You weren't measuring all the products, so test tube and its contents weighed less than before.