Answer:
- <em>The pH of the solution is </em><u><em>7</em></u>
Explanation:
<em>The pH</em> is a measure of the acidity of the solutions. It is defined as the negative logarithm of the molar concentration of hydrogen ions (H⁺).
<em>The hydrogen ion concentration of this solution is 1 × 10⁻⁷ M.</em>
Hence:
- pH = - log (1 × 10⁻⁷) = - (-7) = 7
This pH corresponds to a neutral solution (neither acid nor alkaline).
You should remember this relation bwtween pH and acidity/alkaliinity:
- Low pH (0.0 or close) corresponds to strong acids
- HIgh pH (14.0 or close) corresponds to strong bases
- Acids have pH between 0.0 and 7.0
- Bases have pH between 7.0 and 14.0
Answer:
The table tennis balls represent neutrons that are released when the nucleus splits and cause other nuclei to split
Explanation:
Nuclear fission is defined as the separation of a nucleus into two smaller nuclei.
It takes a neutron to set off a nuclear fission reaction. When that occurs, neutrons are released and those neutrons in turn are what set off other nuclear fissions. This is defined as a Nuclear Fission Chain Reaction. In the model, the one tennis ball that will be thrown will be modeled as the starting neutron that sets of the initial (first) fission. The mouse traps with tennis balls represent the other nucleuses waiting to be struck by the one tennis ball. Once the initial tennis ball strikes the first mouse trap, that mouse trap will release its tennis ball hitting others and continuing the cycle.
It can also be modeled as such:
Answer:
d. decomposition
Explanation:
decomposition reaction is a reaction in which a compound breaks down into 2 or more substances.
the general form is: AB → A + B
Answer:
The concentration of O2 will begin decreasing and The concentrations of CO2 and O2 will be equal.
Explanation:
Equilibrium occurs when the velocity of the formation of the products it's equal to the velocity of the formation of the reactants, thus the concentrations of the compounds remain constant.
Analyzing the information and the reaction given, we can notice that in equilibrium the rate (velocity) of formation of O2 (product) is equal to the rate of formation of CO2 (reactant).
As the CO2 and H2O are placed in the reaction, the Le Chateliêr's principle states that the equilibrium must shift to reestablish the equilibrium, thus, they must be consumed, and the concentration of O2 must increase.
As state above, in equilibrium, the concentrations didn't change, thus, the concentrations of CO2 and O2 will not change.
The concentrations of CO2 and O2 depends on the rate of the reaction and the initial quantities presented, so it's not possible to affirm they'll be equal.