i want to say its (C) but it might also be (B)
Answer and Step-by-step explanation: The described right triangle is in the attachment.
As it is shown, AC is the hypotenuse and BC and AB are the sides, so use Pytagorean Theorem to find the unknown measure:
AC² = AB² + BC²




AB = 5.4
Then, right triangle ABC measures:
AB = 5.4cm
BC = 4.5cm
AC = 7cm
Answer:

Step-by-step explanation:
As the given Augmented matrix is
![\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D9%26-2%260%26-4%26%3A8%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 1 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 2 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 3 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 4 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%26-%20%5Cfrac%7B254%7D%7B7%7D%20%26%5Cfrac%7B663%7D%7B7%7D%20%26%3A-%5Cfrac%7B1690%7D%7B7%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 5 :
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A-%5Cfrac%7B1690%7D%7B254%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 6 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26-%5Cfrac%7B71%7D%7B127%7D%20%26%3A%5Cfrac%7B176%7D%7B127%7D%20%5C%5C0%261%260%26-%5Cfrac%7B131%7D%7B254%7D%20%26%3A%5Cfrac%7B284%7D%7B127%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A%5Cfrac%7B845%7D%7B127%7D%20%5Cend%7Barray%7D%5Cright%5D)
∴ we get

Looks like we're given

which in three dimensions could be expressed as

and this has curl

which confirms the two-dimensional curl is 0.
It also looks like the region
is the disk
. Green's theorem says the integral of
along the boundary of
is equal to the integral of the two-dimensional curl of
over the interior of
:

which we know to be 0, since the curl itself is 0. To verify this, we can parameterize the boundary of
by


with
. Then


Answer:
58.4
Step-by-step explanation:
delta math give up