Answer:
(a) The sample sizes are 6787.
(b) The sample sizes are 6666.
Step-by-step explanation:
(a)
The information provided is:
Confidence level = 98%
MOE = 0.02
n₁ = n₂ = n

Compute the sample sizes as follows:



Thus, the sample sizes are 6787.
(b)
Now it is provided that:

Compute the sample size as follows:

![n=\frac{(z_{\alpha/2})^{2}\times [\hat p_{1}(1-\hat p_{1})+\hat p_{2}(1-\hat p_{2})]}{MOE^{2}}](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B%28z_%7B%5Calpha%2F2%7D%29%5E%7B2%7D%5Ctimes%20%5B%5Chat%20p_%7B1%7D%281-%5Chat%20p_%7B1%7D%29%2B%5Chat%20p_%7B2%7D%281-%5Chat%20p_%7B2%7D%29%5D%7D%7BMOE%5E%7B2%7D%7D)
![=\frac{2.33^{2}\times [0.45(1-0.45)+0.58(1-0.58)]}{0.02^{2}}\\\\=6665.331975\\\\\approx 6666](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2.33%5E%7B2%7D%5Ctimes%20%5B0.45%281-0.45%29%2B0.58%281-0.58%29%5D%7D%7B0.02%5E%7B2%7D%7D%5C%5C%5C%5C%3D6665.331975%5C%5C%5C%5C%5Capprox%206666)
Thus, the sample sizes are 6666.
Answer:
a) 675 000
b) 685 000
Step-by-step explanation:
The population of a town is 680 000 correct to the nearest 10 000.
a) To find it lower bound, we level of accuracy by 2 and then subtract from 680 000
The lower bound is:
680 000-5000=675,000
Therefore the least possible population of the town is 675 000
b) We repeat the same process to find the upper bound
680 000+5000=685,000
I think it should be 6.5 inch but I'm not positive.
I hope this helps! :))