Answer:
The height of the seat at point B above the ground is approximately 218.5 feet
Step-by-step explanation:
The given parameters are;
The radius of the Ferris wheel, r = 125 feet
The angle between each seat, θ = 36°
The height of the Ferris wheel above the ground = 20 feet
Therefore, we have;
The height of the midline, D = The height of the Ferris wheel above the ground + The radius of the Ferris wheel
∴ The height of the midline = 20 feet + 125 feet = 145 feet
The height of the seat at point B above the ground, h = r × sin(θ) + D
By substitution, we have;
h = 125 × sin(36°) + 145 ≈ 218.5 (The answer is rounded to the nearest tenth)
The height of the seat at point B above the ground, h ≈ 218.5 feet.
The rule to find the term is: y=225-4x
you want to know the 82nd term which occurs when x=82 therefore
y = 225-(4 x 82) = -103
82nd term = -103
9514 1404 393
Answer:
252.8 cm²
Step-by-step explanation:
The missing side of the right triangle can be found from the Pythagorean theorem:
s² = 20² -16² = 400 -256 = 144
s = 12 . . . . cm
The area of a right triangle is more easily found using the traditional area formula:
A = 1/2bh
A = 1/2(12 cm)(16 cm) = 96 cm² (left-side triangle)
The area of the triangle on the right can be found from Heron's formula. The semiperimeter is ...
s = (16 +20 +23)/2 = 29.5
The area is ...
A = √(29.5(29.5 -16)(29.5 -20)(29.5 -23)) = √(29.5·13.5·9.5·6.5)
A = √24591.9375 ≈ 156.818 . . . . . cm² (right-side triangle)
Then the total area of the figure is ...
A = 96 cm² +156.818 cm² = 252.818 cm² . . . . total area
Answer:
answer is 22.50
Step-by-step explanation:
trust