1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
11

Solve for the area using heron´s formula

Mathematics
2 answers:
Sveta_85 [38]3 years ago
6 0

Given =>

<em><u>A </u></em><em><u>figure</u></em><em><u> </u></em><em><u>ABCD </u></em><em><u>with</u></em><em><u> </u></em><em><u>two </u></em><em><u>adjacent</u></em><em><u> </u></em><em><u>triangles</u></em><em><u> </u></em><em><u>i.e </u></em><em><u>ABC </u></em><em><u>&</u></em><em><u>ACD</u></em>

To Acquire =>

<em><u>The </u></em><em><u>Area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>figure</u></em>

Points to know while solving this problem=>

  • <em><u>Area of a ∆ According to heron = </u></em>
  • <em><u>[</u></em><em><u>tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex]</u></em>
  • <em><u>Where, s= semi-perimeter </u></em>
  • <em><u> a= length of side a </u></em>
  • <em><u> b = length of side b </u></em>
  • <em><u> с = length of side c</u></em>
  • <em><u>Perimeter of a ∆ = sum of it's all 3 sides</u></em>
  • <em><u>The area of the Given Figure would be Area of ∆ABC Area of ∆ACD</u></em>

Step-by-step explanation:

In ∆ABC,

Perimeter of the ∆

= mAB +mBC+mAC

Where,

mAB =20cm

mAC = 16cm

mBC= ?

<em>Also</em>

mBC

= <u>Base</u> of the ∆ ABC where AB = <u>perpendicular</u> & AC = <u>Hypotenuse</u>

So

mBC = √AC²-AB².......(Using Pythagoras theorem)

mBC = √20²-16²

mBC =√400-256

mBC =√144

mBC = 12.....( The square root of 144 = 12)

Hence,

The perimeter of ∆

= mAB +mBC+mAC

= 16+12+20

= 48cm

Semiperimeter = 48/2

= > 24 cm

<em><u>.°.</u></em>

<em><u>The </u></em><em><u>area </u></em><em><u>of </u></em><em><u>∆</u></em><em><u> </u></em><em><u>ABC </u></em><em><u>according</u></em><em><u> </u></em><em><u>to </u></em><em><u>heron's</u></em><em><u> </u></em><em><u>formula</u></em>

<em><u>=</u></em><em><u>></u></em>

<em><u>\sqrt{24(24 - 16)(24 - 12)(24 - 20)}  \\  =  >  \sqrt{24 \times 8 \times 12 \times 4 }  \\  =  >  \sqrt{12 \times 2 \times 8 \times 12 \times 4}  \\  =  >  \sqrt{12 \times 12 \times 2 \times 4 \times 8}  \\  =  >  \sqrt{12 \times 12 \times 8 \times 8}  \\  =  > 12 \times 8 \\  =  > 96cm {}^{2}</u></em>

<em><u>Now,</u></em>

<em><u>In </u></em><em><u>∆</u></em><em><u>A</u></em><em><u>C</u></em><em><u>D</u></em><em><u>,</u></em>

<em><u>The </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>mAC+</u></em><em><u>mCD+</u></em><em><u>mAD</u></em>

<em><u>where</u></em><em><u>,</u></em>

<em><u>mAC</u></em><em><u>=</u></em><em><u>1</u></em><em><u>6</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>mCD</u></em><em><u>=</u></em><em><u>2</u></em><em><u>3</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>mAD=</u></em><em><u>2</u></em><em><u>0</u></em><em><u>cm</u></em>

<em><u>=</u></em><em><u>></u></em><em><u> </u></em>

<em><u>16cm + 23cm + 20cm \\  =  > 59cm</u></em>

<em><u>So.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>Semiperimeter</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>5</u></em><em><u>9</u></em><em><u>/</u></em><em><u>2</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>=</u></em><em><u>></u></em><em><u> </u></em><em><u>2</u></em><em><u>9</u></em><em><u>.</u></em><em><u>5</u></em>

<em><u>Area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>Same</u></em><em><u>∆</u></em><em><u> </u></em><em><u>using</u></em><em><u> </u></em><em><u>Heron's</u></em><em><u> formula</u></em>

<em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u> </u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em>

<em><u>Hence,</u></em>

<em><u>The </u></em><em><u>area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>figure</u></em>

<em><u>=</u></em><em><u>></u></em><em><u>9</u></em><em><u>6</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em><em><u>+</u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em>

<h2><em><u>=</u></em><em><u>></u></em><em><u>2</u></em><em><u>5</u></em><em><u>2</u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u> </u></em><em><u>cm²</u></em></h2>

Vadim26 [7]3 years ago
4 0

9514 1404 393

Answer:

  252.8 cm²

Step-by-step explanation:

The missing side of the right triangle can be found from the Pythagorean theorem:

  s² = 20² -16² = 400 -256 = 144

  s = 12 . . . . cm

The area of a right triangle is more easily found using the traditional area formula:

  A = 1/2bh

  A = 1/2(12 cm)(16 cm) = 96 cm² (left-side triangle)

The area of the triangle on the right can be found from Heron's formula. The semiperimeter is ...

  s = (16 +20 +23)/2 = 29.5

The area is ...

  A = √(29.5(29.5 -16)(29.5 -20)(29.5 -23)) = √(29.5·13.5·9.5·6.5)

  A = √24591.9375 ≈ 156.818 . . . . . cm² (right-side triangle)

Then the total area of the figure is ...

  A = 96 cm² +156.818 cm² = 252.818 cm² . . . . total area

You might be interested in
ARE THESE CORRECT?! PLS PLS PLS HELP ME IF THEY ARE WRONG LMK PLSSS
vazorg [7]

Answer:

They seem correct!

Step-by-step explanation:

6 0
3 years ago
Which equation is true when n = 4?<br> A<br> 2n = 6<br> Bn+3 = 7<br> 9- n = 13
kari74 [83]

Answer:

The answer is B. n+3=7

Step-by-step explanation:

^^^^^^^

5 0
3 years ago
Read 2 more answers
In an arithmetic sequence, if you are given a3=93 and a5=135, find a=100. Must show work to receive full credit.
Elanso [62]

The 100th term of the sequence is 2130.

<h3>How to calculate the value?</h3>

a3 = a + 2d = 93

a5 = a + 4d = 135

Compute both equations

(4d - 2d) = (135 - 93)

2d = 42

d = 42/2 = 21

a + 2d = 93

a + 2(21) = 93

a + 42 = 93

a = 94 - 42 = 51

100th term will be:

= a + 99d

= 51 + 99(21)

= 51 + 2079

= 2130

Learn more about sequence on:

brainly.com/question/6561461

#SPJ1

5 0
1 year ago
so a group of students are in a club. half are boys ,4/9 of the boys have brown eyes. how many boys have brown eyes?
aliina [53]
it will have to be 5/9 or0.5555555556
8 0
3 years ago
F(x) = x^2+3; g(x) = square root of x-2 find f(g(x))
Anettt [7]
F(g(x)) = x + 1 . Just replace square root of x-2 to x in f(x)
5 0
3 years ago
Other questions:
  • Mike wants to make meatloaf. His recipe uses a total of 3 pounds of meat. If he uses a 3 to 1 ratio of beef to pork, how much po
    13·1 answer
  • Which of the fractions is also a repeating decimal 7/14 3/12 10/16 5/15
    15·1 answer
  • What's another way to express the expression [4(17) + 3(25)] x 5?
    15·1 answer
  • The expression (-4)(-1)(3)(-2) is equal to _____.<br> -24&lt;-----this one?<br> -10<br> 10<br> 24
    14·2 answers
  • B(n)=−4−2(n−1)b, left parenthesis, n, right parenthesis, equals, minus, 4, minus, 2, left parenthesis, n, minus, 1, right parent
    13·1 answer
  • I need help fast plz someone help I really need help an thank you
    9·1 answer
  • The admission ticket for Pat Pat Zoo is $1.50 for children and $4.00 for adults. On a certain day, 2200 people went to the zoo a
    15·1 answer
  • Thirty-two jelly beans are shared by 8 students. How many jelly beans will<br> each student get?
    10·1 answer
  • How do you know when a number is divisible by 6?
    5·1 answer
  • Divide mixed numbers(no decimal answers)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!