1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
11

Solve for the area using heron´s formula

Mathematics
2 answers:
Sveta_85 [38]3 years ago
6 0

Given =>

<em><u>A </u></em><em><u>figure</u></em><em><u> </u></em><em><u>ABCD </u></em><em><u>with</u></em><em><u> </u></em><em><u>two </u></em><em><u>adjacent</u></em><em><u> </u></em><em><u>triangles</u></em><em><u> </u></em><em><u>i.e </u></em><em><u>ABC </u></em><em><u>&</u></em><em><u>ACD</u></em>

To Acquire =>

<em><u>The </u></em><em><u>Area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>figure</u></em>

Points to know while solving this problem=>

  • <em><u>Area of a ∆ According to heron = </u></em>
  • <em><u>[</u></em><em><u>tex] \sqrt{s(s - a)(s - b)(s - c)} [/tex]</u></em>
  • <em><u>Where, s= semi-perimeter </u></em>
  • <em><u> a= length of side a </u></em>
  • <em><u> b = length of side b </u></em>
  • <em><u> с = length of side c</u></em>
  • <em><u>Perimeter of a ∆ = sum of it's all 3 sides</u></em>
  • <em><u>The area of the Given Figure would be Area of ∆ABC Area of ∆ACD</u></em>

Step-by-step explanation:

In ∆ABC,

Perimeter of the ∆

= mAB +mBC+mAC

Where,

mAB =20cm

mAC = 16cm

mBC= ?

<em>Also</em>

mBC

= <u>Base</u> of the ∆ ABC where AB = <u>perpendicular</u> & AC = <u>Hypotenuse</u>

So

mBC = √AC²-AB².......(Using Pythagoras theorem)

mBC = √20²-16²

mBC =√400-256

mBC =√144

mBC = 12.....( The square root of 144 = 12)

Hence,

The perimeter of ∆

= mAB +mBC+mAC

= 16+12+20

= 48cm

Semiperimeter = 48/2

= > 24 cm

<em><u>.°.</u></em>

<em><u>The </u></em><em><u>area </u></em><em><u>of </u></em><em><u>∆</u></em><em><u> </u></em><em><u>ABC </u></em><em><u>according</u></em><em><u> </u></em><em><u>to </u></em><em><u>heron's</u></em><em><u> </u></em><em><u>formula</u></em>

<em><u>=</u></em><em><u>></u></em>

<em><u>\sqrt{24(24 - 16)(24 - 12)(24 - 20)}  \\  =  >  \sqrt{24 \times 8 \times 12 \times 4 }  \\  =  >  \sqrt{12 \times 2 \times 8 \times 12 \times 4}  \\  =  >  \sqrt{12 \times 12 \times 2 \times 4 \times 8}  \\  =  >  \sqrt{12 \times 12 \times 8 \times 8}  \\  =  > 12 \times 8 \\  =  > 96cm {}^{2}</u></em>

<em><u>Now,</u></em>

<em><u>In </u></em><em><u>∆</u></em><em><u>A</u></em><em><u>C</u></em><em><u>D</u></em><em><u>,</u></em>

<em><u>The </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>mAC+</u></em><em><u>mCD+</u></em><em><u>mAD</u></em>

<em><u>where</u></em><em><u>,</u></em>

<em><u>mAC</u></em><em><u>=</u></em><em><u>1</u></em><em><u>6</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>mCD</u></em><em><u>=</u></em><em><u>2</u></em><em><u>3</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>mAD=</u></em><em><u>2</u></em><em><u>0</u></em><em><u>cm</u></em>

<em><u>=</u></em><em><u>></u></em><em><u> </u></em>

<em><u>16cm + 23cm + 20cm \\  =  > 59cm</u></em>

<em><u>So.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>Semiperimeter</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>5</u></em><em><u>9</u></em><em><u>/</u></em><em><u>2</u></em><em><u>c</u></em><em><u>m</u></em>

<em><u>=</u></em><em><u>></u></em><em><u> </u></em><em><u>2</u></em><em><u>9</u></em><em><u>.</u></em><em><u>5</u></em>

<em><u>Area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>Same</u></em><em><u>∆</u></em><em><u> </u></em><em><u>using</u></em><em><u> </u></em><em><u>Heron's</u></em><em><u> formula</u></em>

<em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u> </u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em>

<em><u>Hence,</u></em>

<em><u>The </u></em><em><u>area </u></em><em><u>of </u></em><em><u>the </u></em><em><u>figure</u></em>

<em><u>=</u></em><em><u>></u></em><em><u>9</u></em><em><u>6</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em><em><u>+</u></em><em><u>1</u></em><em><u>5</u></em><em><u>6</u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u>c</u></em><em><u>m</u></em><em><u>²</u></em>

<h2><em><u>=</u></em><em><u>></u></em><em><u>2</u></em><em><u>5</u></em><em><u>2</u></em><em><u>.</u></em><em><u>9</u></em><em><u>7</u></em><em><u> </u></em><em><u>cm²</u></em></h2>

Vadim26 [7]3 years ago
4 0

9514 1404 393

Answer:

  252.8 cm²

Step-by-step explanation:

The missing side of the right triangle can be found from the Pythagorean theorem:

  s² = 20² -16² = 400 -256 = 144

  s = 12 . . . . cm

The area of a right triangle is more easily found using the traditional area formula:

  A = 1/2bh

  A = 1/2(12 cm)(16 cm) = 96 cm² (left-side triangle)

The area of the triangle on the right can be found from Heron's formula. The semiperimeter is ...

  s = (16 +20 +23)/2 = 29.5

The area is ...

  A = √(29.5(29.5 -16)(29.5 -20)(29.5 -23)) = √(29.5·13.5·9.5·6.5)

  A = √24591.9375 ≈ 156.818 . . . . . cm² (right-side triangle)

Then the total area of the figure is ...

  A = 96 cm² +156.818 cm² = 252.818 cm² . . . . total area

You might be interested in
Need help breaking this down
yulyashka [42]

Answer:

2b2t

Step-by-step explanation:

2b2t

5 0
3 years ago
Jake drew a kite the sketch below of a kite that he wants to make.
Kipish [7]

Answer:

1/2 (40×60)

Step-by-step explanation:

area of kite = 1/2 × diagonal 1 × diagonal 2

3 0
3 years ago
A trimming operation at a local manufacturer produces rods whose length conforms to unifrom distribution with a minimum of 18cm
MariettaO [177]

Answer:

The probability that randomly selected road will be at least 25.8 cm long will be 48%.

Step-by-step explanation:

Given: uniform distribution with min and max values of 18 and 33 respectively.

To find : probability density for upper cumulative frequency i.e 25.8 at least means x\geq25.8  upto 33 cm i.e the maximum limit of function.

Solution:

we have by definition , of uniform distribution

we get , probability density function defines as :

<em>F(x,a,b)= </em>\frac{1}{b-a}<em>   </em>a\leq x\leq b

            =1/(33-18)=1/15=0.0667.

this is probability density function.

here the x=25.8 , a=18 and b=33

for lower cumulative frequency it defines as ;

P(x,a,b)=\frac{x-a}{b-a} =25.8-18/33-18=0.52

for upper cumulative frequency it defines as ;

Q(x,a,b)=b-x/b-a=33-25.8/33-18=0.48

here at least 25.8 cm probability means it should be greater than a value(18cm) hence it is provided by the upper cumulative frequency

i.e. Q(x,a,b)=0.48

The probability that randomly selected road will be at least 25.8 cm long will be 48%.

7 0
3 years ago
A Norman window is a window with a semi-circle on top of regular rectangular window. (See the picture.) What should be the dimen
Vikki [24]

Answer:

bottom side (a) = 3.36 ft

lateral side (b) = 4.68 ft

Step-by-step explanation:

We have to maximize the area of the window, subject to a constraint in the perimeter of the window.

If we defined a as the bottom side, and b as the lateral side, we have the area defined as:

A=A_r+A_c/2=a\cdot b+\dfrac{\pi r^2}{2}=ab+\dfrac{\pi}{2}\left (\dfrac{a}{2}\right)^2=ab+\dfrac{\pi a^2}{8}

The restriction is that the perimeter have to be 12 ft at most:

P=(a+2b)+\dfrac{\pi a}{2}=2b+a+(\dfrac{\pi}{2}) a=2b+(1+\dfrac{\pi}{2})a=12

We can express b in function of a as:

2b+(1+\dfrac{\pi}{2})a=12\\\\\\2b=12-(1+\dfrac{\pi}{2})a\\\\\\b=6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a

Then, the area become:

A=ab+\dfrac{\pi a^2}{8}=a(6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a)+\dfrac{\pi a^2}{8}\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a^2+\dfrac{\pi a^2}{8}\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{4}-\dfrac{\pi}{8}\right)a^2\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{8}\right)a^2

To maximize the area, we derive and equal to zero:

\dfrac{dA}{da}=6-2\left(\dfrac{1}{2}+\dfrac{\pi}{8}\right )a=0\\\\\\6-(1-\pi/4)a=0\\\\a=\dfrac{6}{(1+\pi/4)}\approx6/1.78\approx 3.36

Then, b is:

b=6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a\\\\\\b=6-0.393*3.36=6-1.32\\\\b=4.68

3 0
3 years ago
Answer ASAP In the given diagram, ∠4 = 45°, ∠5 = 135° and ∠10 = ∠11 Part A: Solve for the values of the remaining angles. Show a
MaRussiya [10]

Answer:

A) ∠9 = ∠10 = ∠11 = ∠12  = 90°

∠2 = ∠3 = ∠5 = ∠8 = 135°

∠1 = ∠4 = ∠6 = ∠7 = 45°

B) 1. ∠4 and ∠1 -> vertical angles

2. ∠7 and ∠5 -> supplementary

3. ∠9 and ∠10 -> supplementary

Step-by-step explanation:

<u>Data</u>

  • ∠4 = 45°
  • ∠5 = 135°
  • ∠10 = ∠11

The following are vertical angles, so they are congruent:

∠1 ≅ ∠4

∠3 ≅ ∠2

∠11 ≅ ∠9

∠10 ≅ ∠12

∠7 ≅ ∠6

∠5 ≅ ∠8

From here and data, it is deduced that

∠11 ≅ ∠9 ≅ ∠10 ≅ ∠12

From the picture, the addition of them is equal to 360°, then:

∠11 + ∠9 + ∠10 + ∠12 = 360°

4*∠11 = 360°

∠11 = 360°/4

∠11 = 90° = ∠10 = ∠9 = ∠12

∠2 and ∠4 are supplementary, then:

∠2 + ∠4 = 180°

∠2 = 180° - 45°

∠2 = 135°

∠7 and ∠5 are supplementary, then:

∠7 + ∠5 = 180°

∠7 = 180° - 135°

∠7 = 45°

6 0
3 years ago
Read 2 more answers
Other questions:
  • Start at 158. Create a pattern that adds 8. Stop when you have 5 numbers
    9·2 answers
  • I need help with solving #22
    11·2 answers
  • Can you please help me with this one please
    5·2 answers
  • Please help me Find a, b, and c
    11·1 answer
  • Converges or diverges, find the sum. 3 -3/4 +3/16 -3/64.
    7·1 answer
  • For a Saturday matinee, adult tickets cost $7.50 and kids under 12 pay
    9·1 answer
  • How do you convert 1.42 g/cm^2 to mg/mm^2 Step by Step?
    6·1 answer
  • 1. Suppose y varies directly as x. If y = 3 when x = 15. then find x when y = 5.
    15·1 answer
  • Anna is x years old and her sister is 5 years older. How old was her sister 5 years ago?
    12·2 answers
  • What is 2/3 - 5/12? Show me the answer.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!