1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
13

If a + b = -2 And x + y = -2 What’s 4x+5a+4y+5b?

Mathematics
1 answer:
adoni [48]3 years ago
3 0

Answer:-36

Step-by-step explanation: 4(-2)+5(-2)+4(-2)+5(-2)

You might be interested in
I need this answer as soon as possible
wel

The perimeter is the distance all the way around. So it's the sum of the lengths of all 4 sides.

From the picture, you can clearly see the lengths of all 4 sides.

Writum down and adum up !

3 0
2 years ago
Can someone help on my math test? giving out brainiest!
katovenus [111]

Answer:

None of them are correct because the circumference formula is 2pir

8 0
3 years ago
Read 2 more answers
1. A box of cookies has 6 1/4 servings. If Carol buys 4 boxes of cookies, how
Naddika [18.5K]
The answer is C. 6 times 4 is 24 and 1/4 times 4 is 1. therefore 24 + 1 = 25
4 0
3 years ago
Read 2 more answers
Find functions f and g such that h = g ∘ f. (note: the answer is not unique. enter your answers as a comma-separated list of fun
polet [3.4K]

It is given in the question that

h(x) = (fog)(x) = x^2 -81

And x^2 -81

can also be written as

(x^2 -40) -41

Therefore,

(fog)(x) = (x^2 -40)-41

f(g(x)) = (x^2 -40)-41

That gives,

g(x) = x^2 -40, f(x) = x-41

7 0
3 years ago
You are given the following sequence:
borishaifa [10]
<h2>                     Question No 1</h2>

Answer:

7.5 is the 4th term of the sequence 60, 30, 15, 7.5, ... .

In other words:   \boxed{a_4=7.5}

Step-by-step explanation:

Considering the sequence

60, 30, 15, 7.5, ...

As we know that a sequence is said to be a list of numbers or objects in a special order.

so

60, 30, 15, 7.5, ...  

is a sequence starting at 60 and decreasing by half each time. Here, 60 is the first term, 30 is the second term, 15 is the 3rd term and 7.5 is the fourth term.

In other words,

a_1=60,

\:a_2=30,

a_3=15, and

a_4=7.5

Therefore, 7.5 is the 4th term of the sequence 60, 30, 15, 7.5, ... .

In other words:   \boxed{a_4=7.5}

<h2>                       Question # 2</h2>

Answer:

The value of a subscript 5 is 16.

i.e. When n = 5, then h(5) = 16

Step-by-step explanation:

To determine:

What is the value of a subscript 5?

Information fetching and Solution Steps:

  • Chart with two rows.
  • The first row is labeled n.
  • The second row is labeled h of n. i.e. h(n)
  • The first row contains the numbers three, four, five, and six.
  • The second row contains the numbers four, nine, sixteen, and twenty-five.

Making the data chart

n                  3         4         5         6

h(n)               4         9         16       25

As we can reference a specific term in the sequence by using the subscript. From the table, it is clear that 'n' row represents the input and and 'h(n)' represents the output.

So, when n = 5, the value of subscript 5 corresponds with 16. In other words: When n = 5, then h(5) = 16

Therefore, the value of a subscript 5 is 16.

<h2>                         Question # 3</h2>

Answer:

We determine that the sequence 33, 31, 28, 24, 19, … is neither arithmetic nor geometric.

Step-by-step explanation:

Considering the sequence

33, 31, 28, 24, 19, …

Lets calculate the common difference 'd' to determine if the sequence is Arithmetic or not.

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

d = 31 - 33 = -2

d = 28 - 31 = -3

d = 24 - 28 = -4

d = 19 - 24 = -5

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

Lets now calculate the common ratio 'r' to determine if the sequence is Geometric or not.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{31}{33}=0.93939\dots ,\:\quad \frac{28}{31}=0.90322\dots ,\:\quad \frac{24}{28}=0.85714\dots ,\:\quad \frac{19}{24}=0.79166\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence 33, 31, 28, 24, 19, … is neither arithmetic nor geometric.

<h2>                         Question # 4</h2>

Answer:

We determine that the sequence -99, -96, -92, -87, -81... is neither arithmetic nor geometric.

Step-by-step explanation:

From the description statement:

''negative 99 comma negative 96 comma negative 92 comma negative 87 comma negative 81 comma dot dot dot''.

The statement can be translated algebraically as

-99, -96, -92, -87, -81...

Lets calculate the common difference 'd' to determine if the sequence is Arithmetic or not.

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

-96-\left(-99\right)=3,\:\quad \:-92-\left(-96\right)=4,\:\quad \:-87-\left(-92\right)=5,\:\quad \:-81-\left(-87\right)=6

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

Lets now calculate the common ratio 'r' to determine if the sequence is Geometric or not.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{-96}{-99}=0.96969\dots ,\:\quad \frac{-92}{-96}=0.95833\dots ,\:\quad \frac{-87}{-92}=0.94565\dots ,\:\quad \frac{-81}{-87}=0.93103\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence -99, -96, -92, -87, -81... is neither arithmetic nor geometric.    

<h2>                      Question # 5</h2>

Step-by-step explanation:

Considering the sequence

12, 22, 30, 36, 41, …

\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n

22-12=10,\:\quad \:30-22=8,\:\quad \:36-30=6,\:\quad \:41-36=5

As the common difference 'd' is not constant. It means the sequence is not Arithmetic.

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_n}{a_{n-1}}

\frac{22}{12}=1.83333\dots ,\:\quad \frac{30}{22}=1.36363\dots ,\:\quad \frac{36}{30}=1.2,\:\quad \frac{41}{36}=1.13888\dots

The ratio is not constant. It means the sequence is not Geometric.

From the above analysis, we determine that the sequence 12, 22, 30, 36, 41, … is neither arithmetic nor geometric.                  

8 0
3 years ago
Other questions:
  • How to solve this problem. I don’t know how to do this and need help desperately
    7·1 answer
  • The sum of two numbers is 24. One is 6 less than twice the other. Find the two numbers.
    8·1 answer
  • In a right triangle the leg opposite to the acute angle of 30° is 7 in. Find the hypotenuse and other leg.
    13·2 answers
  • Write variable expression: b minus the quotient of c and a
    8·1 answer
  • How do you solve m+5n=p for m
    7·2 answers
  • Help me figure this out
    8·1 answer
  • Barry is trying to calculate the distance between point E(3, 1) and point F(4, 7). Which of the following expressions will he us
    12·2 answers
  • (06.04 HC) The graph shows Wilson's science scores versus the number of hours spent doing science homework. A graph titled Wilso
    13·1 answer
  • What do you call a parade of bunnies going backward?
    15·2 answers
  • Two cards are drawn from a well-shuffled deck of 52 playing cards. Let X denote the number of aces drawn. Find P(X = 1).
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!