Hello, I would like to help you, but I really don't understand the question
<u>Answer:</u> The nuclear equations for the given process is written below.
<u>Explanation:</u>
The chemical equation for the bombardment of neutron to U-238 isotope follows:

Beta decay is defined as the process in which neutrons get converted into an electron and a proton. The released electron is known as the beta particle.

The chemical equation for the first beta decay process of
follows:

The chemical equation for the second beta decay process of
follows:

Hence, the nuclear equations for the given process is written above.
Answer:
hinndndnnddnndndndnd do djfj
Explanation:
hdhdjdbdndndndjjddjdndjdjdndnndndndnd be rnnrbr
For a p type of semiconductor we need a dopant which is from 13th group in periodic table
Al , B, Ga, In Tl
So the correct element will be In : Indium
The other elements belongs to 15th group and hence will give n type semiconductor
Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.