Answer:
placing the reactants on a hot plate
Explanation:
If the temperature goes up, the reaction rate will increase. Because the particle will move faster and makes the kinetic energy larger.
When the mixture is homogeneous
Answer:
0.15 L
Explanation:
You need to first find the volume of the container. You can do this by dividing the mass by the density. This will give you the mass in mL.
5.00 kg = 5,000 g
(5,000 g)/(1.00 g/mL) = 5,000 mL
5,000 mL = 5 L
Now, find the volume the seawater will take up.
(5,000 g)(1.03 g/mL) = 4854.4 mL
4854.4 mL = 4.85 L
Subtract the two volumes to find the volume that left unfilled.
5 L - 4.85 L = 0.15 L
Answer:
Both sodium and calcium.
Explanation:
The membrane potential is maintained inside and outside of the cell due to the unequal distribution of the different ions. This membrane potential difference is important for the generation of action potential.
The resting membrane potential is around +30 mV. This is due to the presence of potassium ions. The sodium and calcium ions must enter in the cell to change this membrane potential and generates the action potential in the body.
Thus, the correct answer is option (3).
No, there is a rule called HONC... they could also bond with o2, n, and c