Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Answer:
b. primitive cubic < body-centered cubic < face-centered cubic
Explanation:
The coordination number is defined as <em>the number of atoms (or ions) surrounding an atom (or ion) in a crystal lattice</em>. Its value gives us a measure of how tightly the spheres are packed together. The larger the coordination number, the closer the spheres are to each other.
- In the <u>primitive cubic</u>, each sphere is in contact with 6 spheres, so its <u>coordination number is 6</u>.
- In the <u>body-centered cubic</u>, each sphere is in contact with 8 spheres, so its <u>coordination number is 12</u>.
- In the <u>face-centered cubic</u>, each sphere is in contact with 12 spheres, so its <u>coordination number is 12</u>.
Therefore, the increasing order in density is the primitive cubic first, then the body-centered cubic, and finally the face-centered cubic.
Explanation:
FJjuhjjjJJJii3ii3ii3iiभबजबछसझबूईसडड
Answer:
To calculate an electron configuration, divide the periodic table into sections to represent the atomic orbitals, the regions where electrons are contained. Groups one and two are the s-block, three through 12 represent the d-block, 13 to 18 are the p-block and the two rows at the bottom are the f-block.Explanation: