Answer:
a
Explanation:
it is an electrolyte because of its strong polar chemical bond
C because first comes the source or producer than the first eater then the second and then it decomposes
First, we need to compute the mass of oxygen found in 100 grams of saltpeter:
mass of oxygen = 100 - (mass of potassium + mass of nitrogen)
= 100 - (38.67 + 13.86)
= 100 - 52.53
mass of oxygen in 100 grams saltpeter = 47.47 grams
Now, we can use cross multiplication to find the mass of oxygen in 328 grams saltpeter as follows:
mass of oxygen = (328 x 47.47) / 100 = 155.7016 grams
Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Answer:
There is 17,114825 g of powdered drink mix needed
Explanation:
<u>Step 1 :</u> Calculate moles
As given, the concentration of the drink is 0.5 M, this means 0.5 mol / L
Since the volume is 100mL, we have to convert the concentration,
⇒0.5 / 1 = x /0.1 ⇒ 0.5* 0.1 = x = 0.05 M
This means there is 0.05 mol per 100mL
e
<u>Step 2 </u>: calculate mass of the powdered drink
here we use the formula n (mole) = m(mass) / M (Molar mass)
⇒ since powdered drink mix is usually made of sucrose (C12H22O11) and has a molar mass of 342.2965 g/mol.
0.05 mol = mass / 342.2965 g/mol
To find the mass, we isolate it ⇒0.05 mol * 342.2965 g/mol = 17,114825g
There is 17,114825 g of powdered drink mix needed