Water has the special type of attraction called Hydrogen bonding. The bonds between the Hydrogen and the Oxygen in each water molecule make a super dipole because the Oxygen atom is way more electronegative than the hydrogen atom. These OH bonds can then be attracted to other H2O molecules. If you have ever poured water up to the brim and there is little bit of water that is poking above the top, hydrogen bonding keeps those water molecules from spilling
Because you’re body is using energy to keep you alive. Your breathing takes energy, so does your heart beat.
The products have the same mass as the reactants
Answer:
Bohr's model explains the spectral lines of the hydrogen atomic emission spectrum. While the electron of the atom remains in the ground state, its energy in uncharged. When the atom absorbs one or more quanta of energy, the electron moves from the ground state orbit to an excited stats orbit that is further away. Energy levels are designated with the variable n. The ground state is n =1, the first excited state is n = 2, and so on. The energy that is gained by the atom is equal to the difference in energy between the two energy levels. When the atom relaxes back to a lower energy state, it releases energy that is again equal to the difference in energy of the two orbits.
The balanced reaction is: 2Mo+3O2>2MoO3