Answer:
A state of rest or balance due to the equal action of opposing forces.
Answer:
0.24 kg used up
Explanation:
He has a mass of 67 kg
The gravitational constant is 9.81 m/s^2
The distance upward is 3500 m
W = m*g*h
W = 67 * 9.81 * 3500
Work = 2,300,445 Joules
Work = 2300 kj
work = 2.30 * 10^6 joules in scientific notation.
Part B
He needs 4 times this amount to climb the mountain because the body is only 25% efficient in converting energy.
4*2.30 * 10^6 = 9.20 * 10^6 Joules of energy are therefore required.
The total amount in a kg of fat = 3.8 * 10^7 joules
x kg of fat is needed to provide 9.20.*10^6 joules
1 kg / (3.8 * 10^7 J ) = x kg / (9.20 * 10^6 J)
9.20 * 10 ^6 * 1 = 3.8 * 10^7 *x
9.20 * 10 ^6 / 3.8 * 10^7 = x
x = 0.24 kg of fat are needed
Before taking a pressure reading, it is necessary for the technician to first allow the temperature of the cylinder to stabilize to room temperature because a comparison with a temperature-pressure chart is only valid and true when both temperature and pressure of the refrigerant are stable.
Answer:
Maximum height of rocket = 2538.74 m
Explanation:
We have equation of motion s = ut + 0.5 at²
For first 5 seconds
s = 0 x 5 + 0.5 x 40 x 5² = 500 m
Now let us find out time after 5 seconds rocket move upward.
We have the equation of motion v = u + at
After 5 seconds velocity of rocket
v = 0 + 40 x 5 = 200 m/s
After 5 seconds the velocity reduces 9.8m/s per second due to gravity.
Time of flying after 5 seconds

Distance traveled in this 20.38 s
s = 200 x 20.38 - 0.5 x 9.81 x 20.38² = 2038.74 m
Maximum height of rocket = 500 +2038.74 = 2538.74 m
The mass of the first block will be three times the mass of the second block.
According to Newton's second law of motion, the force acting on a body is directly proportional to the acceleration as shown;


F is the acting force
m is the mass
a is the acceleration of the body
Given the following parameters
Constant force F = 1N
For the first block with the acceleration of "a"
1 = m₁a
a = m₁/1
m₁ = a .................1
For the second block, acceleration is thrice that of the first. This means;
F = m(3a)
1 = 3ma
..........................2
Divide both equations

From the calculation, we can conclude that the mass of the first block will be three times the mass of the second block.
Learn more here: brainly.com/question/19030143