The force f of the elevator on the man keeps reducing as the elevator keeps going up while the gravitational force mg keeps increasing moving upwards.
<h3>What is an elevator?</h3>
An elevator is an electrical device that lifts people up and down a tall building or structure.
for the elevator to go up, f > mg.
for the elevator to come down mg > f.
Analysis
since the force on the man is f = ma
where a is the acceleration of the elevator, then it means when a increases, f will increase and when it decreases, f would decrease. slowing down means a, is decreasing going up and this reduces the force as the elevator keeps going up.
on the other hand, gravity acts faster on bodies that are slower in motion so since g, increases going up, mg would also increase.
Learn more about forces in an elevator : brainly.com/question/13526583
#SPJ1
Answer:One star can't light up a whole universe
Explanation:It is like saying one light can feel up the whole town which it can't do.
Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly
Complete question:
A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa
Answer:
The average pressure exerted on the surface by the block is 9655.17 Pa
Explanation:
Given;
density of the lead, ρ = 1.13 x 10⁴ kg/m³
mass of the lead block, m = 20 kg
surface area of the area of the block, A = 2.03 x 10⁻² m²
Determine the force exerted on the surface by the block due to its weight;
F = mg
F = 20 x 9.8
F = 196 N
Determine the pressure exerted on the surface by the block
P = F / A
where;
P is the pressure
P = 196 / (2.03 x 10⁻²)
P = 9655.17 N/m²
P = 9655.17 Pa
Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa