1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
2 years ago
7

Write five next terms:0;1;1;2;3;5;8;13​

Mathematics
1 answer:
Iteru [2.4K]2 years ago
7 0

Answer:

it's a(n)=a(n-1)+a(n-2)

this is also known as Fibonacci sequence

0

1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
The temperature on a winter night is 8 Fahrenheit. The temperature decreases by 14 Fahrenheit. What is the new temperature, in d
-BARSIC- [3]

Answer: -6 (8-14=-6)

Step-by-step explanation:

8-14 = -6

7 0
4 years ago
Find the common difference if the 8th term is 55 and the first term is 13
Vlad [161]

Answer:

Step-by-step explanation:

Equation

L = a + (n - 1)*d

Givens

L = 55

a = 13

n =8

Solution

55 = 13 + (8 - 1)*d               Combine

55 = 13 + 7d                       Subtract 13 from both sides

55 - 13 = 7d

42 = 7d                               Divide by 7

d = 6

6 0
3 years ago
Blank divided by 6=0.2
mario62 [17]
Just do 6 x 0.2 to reverse the division
So the answer is 1.2

I think
4 0
3 years ago
Kathi's order at the diner cost $12.75. She had<br> to pay 6% tax on the bill. How much is her tax?
Talja [164]

\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{6\% of 12.75}}{\left( \cfrac{6}{100} \right)12.75}\implies 0.765~~\approx 0.77~~\textit{about 77 cents}

3 0
3 years ago
Other questions:
  • 13 + (4 + 10) = 27 the numbers and the parentheses to create an equivalent addition sentence that illustrates the associative pr
    14·1 answer
  • Write and solve a word problem that can be modeled by addition of two negative integers?
    5·2 answers
  • The polynomial 6x2 x − 15 has a factor of 2x − 3. what is the other factor? 3x − 5 3x 5 4x − 5 4x 5
    15·2 answers
  • Help me asap please!!
    9·1 answer
  • 6x+4=45 find the value of x​
    12·1 answer
  • What is the areas of a square with sides of length 8?
    9·1 answer
  • Solve the problem please
    10·2 answers
  • Helpppppp fastttttttttt
    5·1 answer
  • URGENT PLEASE HELP Me WILL GIVE BRAIN f(x)=2^x (0,f(0)) and (4,f(4)) find the rate of change for this function
    13·1 answer
  • In "The Emperor's New Clothes" what does the opening tell you about the narrator?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!