Answer:
Step-by-step explanation:
B(2,10); D(6,2)
Midpoint(x1+x2/2, y1+y2/2) = M ( 2+6/2, 10+2/2) = M(8/2, 12/2) = M(4,6)
Rhombus all sides are equal.
AB = BC = CD =AD
distance = √(x2-x1)² + (y2- y1)²
As A lies on x-axis, it y-co ordinate = 0; Let its x-co ordinate be x
A(X,0)
AB = AD
√(2-x)² + (10-0)² = √(6-x)² + (2-0)²
√(2-x)² + (10)² = √(6-x)² + (2)²
√x² -4x +4 + 100 = √x²-12x+36 + 4
√x² -4x + 104 = √x²-12x+40
square both sides,
x² -4x + 104 = x²-12x+40
x² -4x - x²+ 12x = 40 - 104
8x = -64
x = -64/8
x = -8
A(-8,0)
Let C(a,b)
M is AC midpoint
(-8+a/2, 0 + b/2) = M(4,6)
(-8+a/2, b/2) = M(4,6)
Comparing;
-8+a/2 = 4 ; b/2 = 6
-8+a = 4*2 ; b = 6*2
-8+a = 8 ; b = 12
a = 8 +8
a = 16
Hence, C(16,12)
Solution: Z= -9
Reasoning: -6 - 3 = -9
Answer:

Step-by-step explanation:
The formula for the accrued amount from compound interest is

1. Amount in account on 1 Jan 2015
(a) Data:
a = £23 517.60
r = 2.5 %
n = 1
t = 1 yr
(b) Calculations:
r = 0.025

The amount that gathered interest was £22 944.00 but, before the interest started accruing, Carol had withdrawn £1000 from the account.
She must have had £23 944 in her account on 1 Jan 2015.
(2) Amount originally invested
(a) Data
A = £23 944.00

3. Summary
1 Jan 2014 P = £23 360.00
1 Jan 2015 A = 23 944.00
Withdrawal = <u> -1 000.00
</u>
P = 22 944.00
1 Jan 2016 A = £23 517.60
Answer:
4
Step-by-step explanation:
The number of shelves must be a factor of the number of books from each category. (Because you are using multiple shelves). You are looking for the greatest amount, so you need to greatest, common factor (GCF) from each bunch of books.
GCF of 12, 16, 32 is 4.