
Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides 
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;
![\begin{gathered} d^2=5^2+10^2 \\ d^2\text{ = 25 + 100} \\ d^2\text{ = 125} \\ d\text{ = }\sqrt[]{125} \\ d\text{ = }11.2\text{ mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20d%5E2%3D5%5E2%2B10%5E2%20%5C%5C%20d%5E2%5Ctext%7B%20%3D%2025%20%2B%20100%7D%20%5C%5C%20d%5E2%5Ctext%7B%20%3D%20125%7D%20%5C%5C%20d%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B125%7D%20%5C%5C%20d%5Ctext%7B%20%3D%20%7D11.2%5Ctext%7B%20mm%7D%20%5Cend%7Bgathered%7D) 
 
        
             
        
        
        
Answer:
the first one is. hope helps
 
        
             
        
        
        
Answer:
4
Step-by-step explanation:
that is the intercept of the line to y
 
        
                    
             
        
        
        
Answer:
INFINITE
Step-by-step explanation:
-3(x-14)+9x=6x+42
-3x+<u>42</u>+9x=6x+42
the underlined 42 is -3 times -14.Neg*neg=positive and 3*14=42
6x+42=6x+42
 
        
             
        
        
        
The correct answer is option B. i.e. the experimental probability is 3% greater than the theoretical probability<span>
The </span>theoretical Outcomes are: HH HT TH TT
 Then, the probability of getting HH = 1/4 = 0.25 = 25%
Now, Experimental Outcomes : <span>HH=28 HT=22 TH=34 TT=16
Total number of outcomes = 28+22+34+16 = 100
</span>Then, the probability of getting HH = 28/100 = 0.28 = 28%
Thus, <span>the experimental probability is 3% greater than the theoretical probability</span>