Answer:
The answer to your question is: ΔH = -283 kJ/mol, first option
Explanation:
Reaction
CO + O₂ ⇒ CO₂
ΔH = ∑H products - ∑H products
ΔH = -393.5 - (-110.5 + 0)
ΔH = -393.5 + 110.5
ΔH = -283 kJ/mol
Answer:
The two types of collisions are :
Type a)
<u>Elastic collision</u>
Type b)
<u>Inelastic collision</u>
Explanation:
Collision : It is the event when two bodies collide with each other for small period of time.
During collision , the bodies exert force to each other.
Example :
When boxer hits with punches .
When bat hits the ball in cricket match.
So, collision is short duration interaction of two objects. When the objects collides , there is change in their velocity.
All collision follow law of conservation of momentum . Their type is decided by , whether they follow conservation of energy also.
<u>Compare and contrast the two types</u>
a) Elastic collision : Those collision in which no loss or gain of kinetic energy will occur. They follow conservation of kinetic energy. Example : ideal gaseous molecule
b) Inelastic collision : Those collision in which Change in kinetic energy will occur. They do not follow conservation of kinetic energy.Almost all conservation are inelastic.
Here Kinetic energy get converted into other form of energy.
Answer:
4.5 moles
Explanation:
One mole is equal to 6.022 x 10^23 atoms
2.71 x 10^24 atoms * 1 mol/ 6.022 x 10^23 atoms = 4.5 moles
Explanation:
When we add a non-volatile solute in a solvent then due to the impurity added to the solution there will occur an increase in the boiling point of the solution.
This increase in boiling point will be known as elevation in boiling point.
As one beaker contains seawater (water having NaCl) will have some impurity in it. So, more temperature is required by seawater to escape into the atmosphere.
Whereas another beaker has only pure water so it is able to easily escape into the atmosphere since, it contains no impurity.
Thus, we can conclude that level of pure water will decrease more due to non-volatile solute present in it as compared to seawater.