Answer:
Temperature and Pressure
Explanation:
Temperature and pressure cause change in volume.
So any change in volume will alter the ratio of density as given by equation of density.
Density = mass/ volume
Change in volume will alter the ratio.
Kindly mark it branliest if the answer is little bit satisfying.
A physical change is any change in a substances form that does not change its chemical makeup. Examples of physical changes are breaking a stick or melting ice. A chemical change occurs when atoms of a substance are rearranged, and the bonds between the atoms are broken or formed. HOPE THIS HELPS!!
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
<span>U-236 spontaneously decays to Br-87, X and three neutrons. The element X is 4. La, also known as Lanthanum, number 57 in the periodic system of elements.</span>
The grams of aluminium extracted from 5000g of alumina is 2647 grams
<h3>Chemical formula of alumina:</h3>
Let's calculate the molecular mass of Al₂O₃
Al₂O₃ = 27 × 2 + 16 × 3 = 54 + 48 = 102 g/mol
Therefore,
102 g of Al₂O₃ = 54 g of aluminium
5000g of Al₂O₃ = ?
mass of aluminium produced = 5000 × 54 / 102
mass of aluminium produced = 270000 / 102
mass of aluminium produced = 2647.05882353
mass of aluminium produced = 2647 grams
learn more on mass here: brainly.com/question/14627327