Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.
Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.
Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
3Fe + 4H2O (yields) Fe3O4 + 4H2
Difference in density between the two liquids
The correct answer is <em>B. a Salt </em><em>because The reaction of an acid and a base is called a neutralization reaction because the properties of both the acid and base are diminished or neutralized when they react. A neutralization reaction is a reaction of an acid with a base in aqueous solution to produce water and a salt, as shown by the following equation:</em>
<em>acid + base → salt + water</em>
<em />
<em>* Hopefully this helps:) Mark me the brainliest:) </em>
<em>∞ 234483279c20∞</em>
Answer:
Decomposition
Explanation:
A decomposition reaction is a type of reaction in which a compound is broken down into its constituent elements sometimes under the influence of heat.
When iron (III) hydroxide is heated,new products are formed according to the equation; 2Fe(OH)3 -----------> Fe2O3 + 3H2O.
This is a thermal decomposition reaction.