<span>120
The simple answer is that 5 items can be arranged 5! (5 factorial) different ways. But let's expand upon that brief answer. We have 5 jobs and 5 machines with which to perform those jobs. So let's look at the 1st machine. Any of 5 of the jobs may be assigned to it. Now we have 4 jobs left unassigned. So let's look at the 2nd machine. For that machine, any of the 4 remaining jobs may be assigned to it, leaving 3 unassigned jobs. We can continue in that fashion, assigning at random one the of 3 remaining jobs to the 3rd machine, one of the 2 remaining jobs to the 4th machine, and finally, the only unassigned job to the 5th machine. So there's 5 * 4 * 3 * 2 * 1 = 5! = 120 different ways to assign those 5 jobs to all 5 machines.</span>
Answer:
A - For errors or signs of identity fraud
Explanation:
That is the correct answer, good luck, and have a good day.
Answer: $0.79.
Explanation:
Given that,
Tendered bill = $5
Bill charged = $4.21
Therefore,
The change due is calculated by subtracting bill charged from tendered bill.
Change due = Tendered bill - Bill charged
= $5 - $4.21
= $0.79
Hence, change in dollars would be $0.79.
Answer:
Present value= $3,642,651.54
Explanation:
Giving the following information:
You have just won the lottery and will receive $530,000 in one year. You will receive payments for 25 years, and the payments will increase by 4 percent per year. The appropriate discount rate is 10 percent.
First, we need to calculate the final value using the following formula:
FV= {A*[(1+i)^n-1]}/i
A= annual payment= 530,000
i= 0.04 + 0.10= 0.14
n= 25
FV= {530,000*[(1.14^25)-1]}/0.14
FV= 96,391,538.43
Now, we can calculate the present value:
PV= FV/(1+i)^n
PV= 96,391,538.43/ (1.14^25)
PV= $3,642,651.54