What country and grade are you?
Please tell me! I’m going to help you
Answer:

Explanation:
Balanced equation: CO(g) + H₂O(g) ⟶ CO₂(g) + H₂(g)
We can calculate the enthalpy change of a reaction by using the enthalpies of formation of reactants and products

(a) Enthalpies of formation of reactants and products

(b) Total enthalpies of reactants and products

(c) Enthalpy of reaction
A mixture has lots of different elements that are not necessarily bonded to each other, like sea water has lots of dirt, animals, and plant parts in it. Compared to a solution (strictly salt and water, which bond and ionize with each other).
Answer:
3.5 g
Explanation:
The density of water is 1 g/mL. The mass (m) corresponding to 20.0 mL is 20.0 g.
We can calculate the heat (Q) required to raise the temperature of 20.0 mL of water 1 °C (ΔT).
Q = c × m × ΔT = 1 cal/g.°C × 20.0 g × 1 °C = 20 cal
where,
c is the specific heat capacity of water
There are 160 calories in 28 g of Cheetos. The mass that releases 20 cal is:
20 cal × (28 g/160 cal) = 3.5 g
The rate law for the reaction : r=k.[A]²
<h3>Further explanation</h3>
Given
Reaction
A ⟶ B + C
Required
The rate law
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For the second-order reaction it can be:
1. the square of the concentration of one reactant.
![\tt r=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5E2)
2. the product of the concentrations of two reactants.
![\tt r=k[A][B]](https://tex.z-dn.net/?f=%5Ctt%20r%3Dk%5BA%5D%5BB%5D)
And the reaction should be(for second order) :
2A ⟶ B + C
Thus, for reaction above (reactant consumption rate) :
![\tt r=-\dfrac{\Delta A}{2\Delta t}=k[A]^2](https://tex.z-dn.net/?f=%5Ctt%20r%3D-%5Cdfrac%7B%5CDelta%20A%7D%7B2%5CDelta%20t%7D%3Dk%5BA%5D%5E2)