Answer:
1. Mg (s) + 2Na+(aq) → 2Na(s) + Mg²⁺(aq)
2. 2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)
Explanation:
The net ionic equation of a reaction express only the chemical species that are involved in the reaction:
1. Mg (s) + Na2CrO4 (aq) → 2Na + MgCrO4(aq)
The ionic equation:
Mg (s) + 2Na+(aq) + CrO4²⁻ (aq) → 2Na + Mg²⁺ + CrO4²⁻(aq)
Subtracting the ions that don't change:
<h3>Mg (s) + 2Na+(aq) → 2Na + Mg²⁺</h3>
2. 2K(s) + Cd(NO3)2(aq) → 2KNO3(aq) + Cd(s)
The ionic equation:
2K(s) + Cd²⁺(aq) + 2NO3⁻(aq) → 2K⁺(aq) + 2NO3⁻(aq) + Cd(s)
Subtracting the ions that don't change:
<h3>2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)</h3>
Answer:
The starting position of this object is 3 m
The object is traveling at a velocity of 3 m/s
Explanation:
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
•The atomic number of an atom is the number of protons it has. If the atomic number is 20 then we know the atom has 20 protons.
•The mass number of an atom is the total number of protons and neutrons the atom contains. The mass number is 41 and the number of protons is 20, just subtract 20 from 41 and you will get the number of neutrons: 41 - 20= 21. The atoms has 21 neutrons.
•The number of electrons found in an atom is equal to the number of protons. The atoms has 20 protons which means it has 20 electrons.
So, the answer is:
B) 20 protons, 20 electrons, and 21 neutrons
Answer:
The atomic mass of gallium (Ga) = <u>69.723 g/mol</u>
Explanation:
Given: Two isotopes of Gallium (Ga) are Gallium-69 (⁶⁹Ga) and Gallium-71 (⁷¹Ga)
<u>For ⁶⁹Ga: </u>
Relative abundance = 60.12% = 60.12 ÷ 100 = 0.6012; Atomic mass = 68.9257 g/mol
<u>For ⁷¹Ga:</u>
Relative abundance = 39.88% = 39.88 ÷ 100 = 0.3988; Atomic mass = 70.9249 g/mol
∴ The atomic mass of Ga = (Relative abundance of ⁶⁹Ga × Atomic mass of ⁶⁹Ga) + (Relative abundance of ⁷¹Ga × Atomic mass of ⁷¹Ga)
⇒ Atomic mass of Ga = (0.6012 × 68.9257 g/mol) + (0.3988 × 70.9249 g/mol) = <u>69.723 g/mol</u>
<u>Therefore, the atomic mass of gallium (Ga) = 69.723 g/mol</u>