Hello
To find an equal ratio, you can either multiply or divide each term in the ratio by the same number (but not zero). For example, if we divide both terms in the ratio 3:6 by the number three, then we get the equal ratio, 1:2.
So the unit rate would just be the numbers all added up
Answer: n=
−28
/61
Step-by-step explanation:
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C




![\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%202%5Csin%20C%5Ccdot%20%5B%5Ccos%20%28A-B%29%2B%5Ccos%20%28A%2BB%29%5D)


LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C 
Answer:
8n³ + 10n² - 13n - 15
Step-by-step explanation:
Distribute the factors by multiplying each term in the first factor by each term in the second factor, that is
4n(2n² + 5n + 3) - 5(2n² + 5n + 3) ← distribute both parenthesis
= 8n³ + 20n² + 12n - 10n² - 25n - 15 ← collect like terms
= 8n³ + 10n² - 13n - 15