Answer:
0.073 = 7.3% probability that a randomly selected student produces either less than 620 or more than 700 pounds of solid waste
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 650 pounds and a standard deviation of 20 pounds.
This means that 
What is the probability that a randomly selected student produces either less than 620 or more than 700 pounds of solid waste?
Less than 620:
pvalue of Z when X = 620. So



has a pvalue of 0.0668
More than 700:
1 subtracted by the pvalue of Z when X = 700. So



has a pvalue of 0.9938
1 - 0.9938 = 0.0062
Total:
0.0668 + 0.0062 = 0.073
0.073 = 7.3% probability that a randomly selected student produces either less than 620 or more than 700 pounds of solid waste
Well it could be a number of answers like 3,2 ,5,4 but u cant make it too long
Answer: B. 12 girls
Step-by-step explanation:
Since the ratio is 4:3 we can multiply both sides by 4 to get 16 boys and the equivalent number of girls for this problem, 16:12
Answer: x= 5/3
Step-by-step explanation: hope this helps!
In the table and chart, we have let x represent numbers of Rock CDs and y represent numbers of Rap CDs.
a) The purple dots represent feasible solutions. Their coordinates are listed in the table (for coordinates on the lines) and as a list of points (for points between the lines).
b) The feasible region for total time in hours is shaded blue.
c) The feasible regiion for total cost is shaded red.
d) The overlap of the two regions is shaded purple. The combinations that are feasible are purple dots in that region.
e) The equations used are listed at the left side of the chart. The equations are labeled by color. (≤112 is the cost equation; ≥75 is the hours equation)
ea) The area that is feasible with respect to both constraints is doubly-shaded.
eba) Too much money is spent to the right of the red line.
ebb) Too few hours are used to the left of the blue line.
f) The line for the desired profit is parallel to the "hours" line, but has x-intercept 10 and y-intercept 6. All the points shown except the two on the lower line will give the desired profit.
g) The higher profit line goes through the points (3, 7) and (8, 4). Those two combinations and the points on or near the upper line above y=4 will meet the higher profit requirement.