To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is

Through this equation we can find the mass of the Planet in function of the distance, therefore



The orbital velocity is





The time period of revolution is,




Therefore the orbital period of the satellite is closes to 1 hour and 12 min
Answer:
<h2>20 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>20 m/s²</h3>
Hope this helps you
The circulation system for mammals is very complex
Answer:
Electron groups could be considered as Lone pair electrons and bonded pairs of electrons.
Answer: Option D & B
Explanation:
The two or more electrons can be bonded by single bond, double bond, covalent bond of electrons can simply be lone pair of electrons. Unshared pair of electrons are generally termed as lone pair of electrons in an atom which are generally present in the outermost shell of atoms. Hence electron groups can be determined by bonded pairs and lone pairs of electrons.
I got this from another brainly user
Answer:
the bar is the top and bottem. the nucleas in the middle and the Spiral arm is the last space
Explanation: