-2y + 2
Explanation
We have (x - y + 1) - (x + y - 1)
Let’s expand the Parentheses
= x - y + 1 - x - y + 1
Then let’s group the like terms
= (x - x) + (- y - y) + (1 + 1)
= 0 - 2y + 2
= 2y + 2
Answer:
(48.106 ; 53.494)
Step-by-step explanation:
Given the data:
X : 52 48 49 52 53
Sample mean = ΣX / n
n = 5
Sample mean, xbar = 254 / 5 = 50.8
Standard deviation, s = 2.17 (using calculator)
The standard error (SE) : s/√n =2.17/√5 = 0.970
The degree of freedom, df = n-1
df = 5 - 1 = 4
Tscore(0.05, 4) = 2.776
Confidence interval :
Xbar ± Tscore*standard error
50.8 ± (2.776 * 0.970)
50.8 ± 2.694
Lower boundary = 50.8 - 2.694 = 48.106
Upper boundary = 50.8 + 2.694 = 53.494
(48.106 ; 53.494)
I will have to assume that you actually meant " e^(ln 7x). The exponential and logarithmic functions are inverses of each other, so d^(ln 7x) = 7x (answer C).
Answer:
a² + b² = c²
Step-by-step explanation:
Pythagorean theorem: a² + b² = c²
Select all the correct answers:
1) Yes
2) No
x=8→h(8)=2(8)^2+5(8)+2=2(64)+40+2=128+40+2→h(8)=170
x=8→f(8)=3^8+2=6,561+2→f(8)=5,563>170=h(8)
3) Yes
4) No
5) Yes
rg=[g(3)-g(2)]/(3-2)=[g(3)-g(2)]/1→rg=g(3)-g(2)
g(3)=20(3)+4=60+4→g(3)=64
g(2)=20(2)+4=40+4→g(2)=44
rg=64-44→rg=20
rf=f(3)-f(2)
f(3)=3^3+2=27+2→f(3)=29
f(2)=3^2+2=9+2→f(2)=11
rf=29-11→rf=18
rh=h(3)-h(2)
h(3)=2(3)^2+5(3)+2=2(9)+15+2=18+15+2→h(3)=35
h(2)=2(2)^2+5(2)+2=2(4)+10+2=8+10+2→h(2)=20
rh=35-20→rh=15
rg=20>18=rf
rg=20>15=rh
6) No
x=4→g(4)=20(4)+4=80+4→g(4)=84
x=4→h(4)=2(4)^2+5(4)+2=2(16)+20+2=32+20+2→h(4)=54
x=4→f(4)=3^4+2=81+2→f(4)=83>54=h(4)
f(4)=83<84=g(4)