Answer:
191
Step-by-step explanation:
955 = 5x
divide both sides by 5 to get x by itself
x = 191
Answer:
see explanation
Step-by-step explanation:
(a)
Since Y is the midpoint of XZ , then
XY = YZ , that is
4a - 4 = 3a + 2 ( subtract 3a from both sides )
a - 4 = 2 ( add 4 to both sides )
a = 6
(b)
XY = 4a - 4 = 4(6) - 4 = 24 - 4 = 20
XZ = 4a - 4 + 3a + 2 = 7a - 2 = 7(6) - 2 = 42 - 2 = 40
Answer:
Step-by-step explanation:
24
Answer:
![\sqrt[7]{x^{4}}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7Bx%5E%7B4%7D%7D)

![(\sqrt[7]{x})^{4}](https://tex.z-dn.net/?f=%28%5Csqrt%5B7%5D%7Bx%7D%29%5E%7B4%7D)
Step-by-step explanation:
we have

Remember the properties
![\sqrt[n]{a^{m}}=a^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)

so
<u><em>Verify each case</em></u>
Part 1) we have
![\sqrt[4]{x^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B7%7D%7D)
we know that
![\sqrt[4]{x^{7}}=x^{\frac{7}{4}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B7%7D%7D%3Dx%5E%7B%5Cfrac%7B7%7D%7B4%7D%7D)
Compare with the given expression

Part 2) we have
![\sqrt[7]{x^{4}}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7Bx%5E%7B4%7D%7D)
we know that
![\sqrt[7]{x^{4}}=x^{\frac{4}{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7Bx%5E%7B4%7D%7D%3Dx%5E%7B%5Cfrac%7B4%7D%7B7%7D%7D)
Compare with the given expression

therefore
Is equivalent to the given expression
Part 3) we have

we know that

Compare with the given expression

therefore
Is equivalent to the given expression
Part 4) we have
we know that

Compare with the given expression

Part 5) we have
![(\sqrt[4]{x})^{7}](https://tex.z-dn.net/?f=%28%5Csqrt%5B4%5D%7Bx%7D%29%5E%7B7%7D)
we know that
![(\sqrt[4]{x})^{7}=(x^{\frac{1}{4}})^{7}=x^{\frac{7}{4}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B4%5D%7Bx%7D%29%5E%7B7%7D%3D%28x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%29%5E%7B7%7D%3Dx%5E%7B%5Cfrac%7B7%7D%7B4%7D%7D)
Compare with the given expression

Part 6) we have
![(\sqrt[7]{x})^{4}](https://tex.z-dn.net/?f=%28%5Csqrt%5B7%5D%7Bx%7D%29%5E%7B4%7D)
we know that
![(\sqrt[7]{x})^{4}=(x^{\frac{1}{7}})^{4}=x^{\frac{4}{7}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B7%5D%7Bx%7D%29%5E%7B4%7D%3D%28x%5E%7B%5Cfrac%7B1%7D%7B7%7D%7D%29%5E%7B4%7D%3Dx%5E%7B%5Cfrac%7B4%7D%7B7%7D%7D)
Compare with the given expression

therefore
Is equivalent to the given expression