Answer:
Step-by-step explanation:
3 in 340,500 is 300,000
and 3 in 316 ,000 is 300,000
so 300,000-300,000 = 0
The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours
A radius of 0.75 would be rational because the decimal ends and does not repeat itself.
First of all, you need to come to an understanding of what you mean by "compare that score to the population." Often, that will mean determining the percentile rank of the score.
To determine the percentile rank of a raw score, you first nomalize it by determining the number of standard deviations it lies from the mean. That is, you subtract the population mean and divide that difference by the population standard deviation. Now, you have what is referred to as a "z-score".
Using a table of standard normal probability functions (or an equivalent calculator or app), you look up the cumulative distribution value corresponding to the z-score you have. This number between 0 and 1 (0% and 100%) will be the percentile rank of the score, the fraction of the population that has raw scores below the raw score you started with.
Answer:
enjooooooooyyyyyyyyyyyyyyyy