Answer:
66.48% of full-term babies are between 19 and 21 inches long at birth
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean length of 20.5 inches and a standard deviation of 0.90 inches.
This means that
What percentage of full-term babies are between 19 and 21 inches long at birth?
The proportion is the p-value of Z when X = 21 subtracted by the p-value of Z when X = 19. Then
X = 21
has a p-value of 0.7123
X = 19
has a p-value of 0.0475
0.7123 - 0.0475 = 0.6648
0.6648*100% = 66.48%
66.48% of full-term babies are between 19 and 21 inches long at birth
Answer:
44
Step-by-step explanation:
because it looks like a square tilted
<h3>
Answer:</h3>
<h3>
Step-by-step explanation:</h3>
The rules of exponents tell you ...
... (a^b)(a^c) = a^(b+c) . . . . . . applies inside parentheses
... (a^b)^c = a^(b·c) . . . . . . . . applies to the overall expression
The Order of Operations tells you to evaluate inside parentheses first. Doing that, you have ...
... x^(4/3)·x^(2/3) = x^((4+2)/3) = x^2
Now, you have ...
... (x^2)^(1/3)
and the rule of exponents tells you to multiply the exponents.
... = x^(2·1/3) = x^(2/3)