Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Compare or
order the digits that are different, Write > or <. or use a number line
<span>44 < 72<span>
Say:
</span>"44 is less
than 72"</span>
<span>Or you
can look at the place value.</span>
<span>You can express using an exponent, an octet and many more</span>
Answer:
357
Step-by-step explanation:
5% of 340 is 17 add that to 340, the price of bicycle by itself and you get 357
Answer:
i think the answer is A
Step-by-step explanation:
again "i think". so i could be wrong
Answer:
The minimum cost is $9,105
Step-by-step explanation:
<em>To find the minimum cost differentiate the equation of the cost and equate the answer by 0 to find the value of x which gives the minimum cost, then substitute the value of x in the equation of the cost to find it</em>
∵ C(x) = 0.5x² - 130x + 17,555
- Differentiate it with respect to x
∴ C'(x) = (0.5)(2)x - 130(1) + 0
∴ C'(x) = x - 130
Equate C' by 0 to find x
∵ x - 130 = 0
- Add 130 to both sides
∴ x = 130
∴ The minimum cost is at x = 130
Substitute the value of x in C(x) to find the minimum unit cost
∵ C(130) = 0.5(130)² - 130(130) + 17,555
∴ C(130) = 9,105
∵ C(130) is the minimum cost
∴ The minimum cost is $9,105