Which ordered pair makes both inequalities true?
1 answer:
The ordered pair which makes both inequalities true is: D. (3, 0).
<h3>How to determine ordered pair?</h3>
In Mathematics, an inequality can be used to show the relationship between two (2) or more integers and variables in an equation.
In order to determine ordered pair which makes both inequalities true, we would substitute the points into the inequalities as follows:
At (0, 0), we have:
y > -2x + 3
0 > -2(0) + 3
0 > 3 (false).
y < x – 2
0 < 0 - 2
0 < -2 (false)
At (0, -1), we have:
y > -2x + 3
-1 > -2(0) + 3
-1 > 3 (false).
y < x – 2
-1 < 0 - 2
-1 < -2 (false)
At (1, 1), we have:
y > -2x + 3
1 > -2(1) + 3
1 > -1 (true).
y < x – 2
1 < 1 - 2
1 < -1 (false)
At (3, 0), we have:
y > -2x + 3
0 > -2(3) + 3
0 > -3 (true).
y < x – 2
0 < 3 - 2
0 < 1 (true).
Read more on inequalities here: brainly.com/question/24372553
#SPJ1
You might be interested in
3x*5x-2=4-2x*1
15x-2=4-2x
13x=2
x=6.5
wdym: 14 of the total cake
The y intercept is when x=0 so y=1/2(0) -3 so y=0-3 so y=-3
One number is equal to the square of another. find the numbers if both are positive and their sum is 930.
4F because when you go through the sequence that is what you get