Answer: B) A = 750(1.04)ⁿ
<u>Step-by-step explanation:</u>
The formula for compounded annually is: A = P(1 + r)ⁿ where
- A (amount accrued) = <em>unknown</em>
- P (amount invested) = $750
- r (interest rate) = 4% -->(0.04)
- t (time in years) = <em>unknown</em>
A = 750(1 + 0.04)ⁿ
= 750(1.04)ⁿ
9
yea........ hi how you doinn
Answer:
done
Step-by-step explanation:
I have installed it
Answer:
a) possible progressions are 5
b) the smallest and largest possible values of the first term are 16 and 82
Step-by-step explanation:
<u>Sum of terms:</u>
- Sₙ = n/2(a₁ + aₙ) = n/2(2a₁ + (n-1)d)
- S₂₀ = 20/2(2a₁ + 19d) = 10(2a₁ + 19d)
- 2020 = 10(2a₁ + 19d)
- 202 = 2a₁ + 19d
<u>In order a₁ to be an integer, d must be even number, so d = 2k</u>
- 202 = 2a₁ + 38k
- 101 = a₁ + 19k
<u>Possible values of k= 1,2,3,4,5</u>
- k = 1 ⇒ a₁ = 101 - 19 = 82
- k = 2 ⇒ a₁ = 101 - 38 = 63
- k = 3 ⇒ a₁ = 101 - 57 = 44
- k = 4 ⇒ a₁ = 101 - 76 = 25
- k = 5 ⇒ a₁ = 101 - 95 = 16
<u>As per above, </u>
- a) possible progressions are 5
- b) the smallest and largest possible values of the first term are 16 and 82