Answer:
Demonstrate the register addressing mode for the following instructions. Also what addressing mode belongs to these instructions?
1. MOV CX, [BX+DI]
2. MOV AX, ARRAY[CX]
3. MOV BX, [CX+DI+6]
The beginning development of a
star is marked by a supernova explosion, with the gases present in the nebula
being forced to scatter. As the star shrinks, radiation of the surface
increases and create pressure on the outside shell to push it away and forming
a planetary nebula or white dwarf.
Answer:
The Rouché-Capelli Theorem. This theorem establishes a connection between how a linear system behaves and the ranks of its coefficient matrix (A) and its counterpart the augmented matrix.
![rank(A)=rank\left ( \left [ A|B \right ] \right )\:and\:n=rank(A)](https://tex.z-dn.net/?f=rank%28A%29%3Drank%5Cleft%20%28%20%5Cleft%20%5B%20A%7CB%20%5Cright%20%5D%20%5Cright%20%29%5C%3Aand%5C%3An%3Drank%28A%29)
Then satisfying this theorem the system is consistent and has one single solution.
Explanation:
1) To answer that, you should have to know The Rouché-Capelli Theorem. This theorem establishes a connection between how a linear system behaves and the ranks of its coefficient matrix (A) and its counterpart the augmented matrix.
![rank(A)=rank\left ( \left [ A|B \right ] \right )\:and\:n=rank(A)](https://tex.z-dn.net/?f=rank%28A%29%3Drank%5Cleft%20%28%20%5Cleft%20%5B%20A%7CB%20%5Cright%20%5D%20%5Cright%20%29%5C%3Aand%5C%3An%3Drank%28A%29)

Then the system is consistent and has a unique solution.
<em>E.g.</em>

2) Writing it as Linear system


3) The Rank (A) is 3 found through Gauss elimination


4) The rank of (A|B) is also equal to 3, found through Gauss elimination:
So this linear system is consistent and has a unique solution.
Answer:
My best guess about this is C
Explanation: