Explanation:
An object in motion <u>stays</u> <u>at</u> motion An object <u>at</u> <u>rest</u> stays at rest unless acted by an <u>external</u> force.
[ Newton's 1st law of motion ]
The process that is being shown by water being given off from a bond site is DEHYDRATION SYNTHESIS.
Dehydration synthesis is the process of joining two molecules or compounds together as a result of removal of water.
This element is found in group 3A, period 3
<h3>Further explanation
</h3>
The maximum number of electrons that can be filled in the nth electron shell is 2n²(n=shell)
-
K shell (n = 1) maximum 2 x 1² = 2 electrons
- L shell (n = 2) maximum 2 x 2² = 8 electrons
- M shell (n = 3) maximum 2 x 3² = 18 electrons
- N shell (n = 4) maximum 2 x 4² = 32 electrons
Electron configuration of element X : 2.8.3 , so :
K shell = 2 ⇒1s²
L shell = 8⇒2s²2p⁶
M shell = 3⇒ 3s²3p¹
Block p: group 13-18 (has a 2p-6p configuration), also called a representative element because it includes metals, non-metals and metalloids
The outer shell 3s²3p¹ : located in group 3A and period 3
group⇒valence electron ⇒3
period⇒the greatest value of the quantum number n⇒3
Answer: The solubility of this compound in pure water is 0.012 M
Explanation:
Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution. It is represented as
The equation for the ionization of the is given as:
By stoichiometry of the reaction:
1 mole of
gives 1 mole of
and 2 mole of
When the solubility of
is S moles/liter, then the solubility of
will be S moles\liter and solubility of
will be 2S moles/liter.
![6.5\times 10^{-6}=[S][2S]^2](https://tex.z-dn.net/?f=6.5%5Ctimes%2010%5E%7B-6%7D%3D%5BS%5D%5B2S%5D%5E2)
Thus solubility of this compound in pure water is 0.012 M