Pedigree charts are used to see traits that are present in families or individuals. For example, it can be used see if certain diseases are running through someone's family and if that individual will inherit the disease.
Answer is: <span>
The reaction will not be spontaneous at any temperature.
</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>
Answer:
a) Kb = 10^-9
b) pH = 3.02
Explanation:
a) pH 5.0 titration with a 100 mL sample containing 500 mL of 0.10 M HCl, or 0.05 moles of HCl. Therefore we have the following:
[NaA] and [A-] = 0.05/0.6 = 0.083 M
Kb = Kw/Ka = 10^-14/[H+] = 10^-14/10^-5 = 10^-9
b) For the stoichiometric point in the titration, 0.100 moles of NaA have to be found in a 1.1L solution, and this is equal to:
[A-] = [H+] = (0.1 L)*(1 M)/1.1 L = 0.091 M
pKb = 10^-9
Ka = 10^-5
HA = H+ + A-
Ka = 10^-5 = ([H+]*[A-])/[HA] = [H+]^2/(0.091 - [H+])
[H+]^2 + 10^5 * [H+] - 10^-5 * 0.091 = 0
Clearing [H+]:
[H+] = 0.00095 M
pH = -log([H+]) = -log(0.00095) = 3.02
682mL
Explanation:
Given parameters:
Initial volume of air = 600mL
Initial temperature = 20°C
Final temperature = 60°C
Unknown:
Final volume = ?
Solution:
To solve this problem, we apply Charles's law';
Charles's law states that "at constant pressure, the volume of a given mass of gas is directly proportional to its temperature. "
Mathematically;

V₁ is the initial volume of air
T₁ is the initial temperature of air
V₂ is the final volume of air
T₂ is the final temperature of air
To proceed in solving this problem, we need to convert the given temperature to Kelvin;
T K = 273 + T°C
T₁ = 273 + 20 = 293K
T₂ = 273 + 60 = 333K
now input the parameters;

V₂ = 682mL
learn more:
Gas laws brainly.com/question/2438000
#learnwithBrainly