Answer:
Instantaneous speed is the exact speed that an object in motion has at a given instant in time.
Instantaneous velocity is the exact velocity that an object in motion has at a given instant in time.
Explanation:
Instantaneous velocity tells how fast an object is moving anywhere along its path.
Instantaneous speed at an instant is equal to the magnitude of the instantaneous velocity at that instant.
Answer:
The fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Explanation:
Given;
initial temperature of the liquid, t₁ = 76.3 +/- 0.4⁰C
final temperature of the liquid, t₂ = 67.7 +/- 0.3⁰C
The change in temperature of the liquid is calculated as;
Δt = t₂ - t₁
Δt = (67.7 - 76.3) +/- (0.3 - 0.4)
Δt = (-8.6) +/- (-0.1)
Δt = 8.6 +/- 0.1 ⁰C
Therefore, the fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Panel surface area =34m×46m=1,564m^2
total power =1564m^2×1390w/m^2
=2173960watts
now you must calculate total energy.
Energy = power×Time
However time must be in seconds so we multiply 2hrs×60min×60s=7200seconds
7200s×2173960w =15,652,512,000 joules of energy
The correct choice would be
B) The Sun’s mass is much greater than Earth’s
The sun as we know has greatest mass in our solar system and lighter objects tends to orbit around the heavier objects. the mass of earth is very much smaller as compared to that of the sun. hence the earth orbits around the sun due to the force of gravitational attraction between the two objects.
To solve this problem it is necessary to apply the concepts related to the Gravitational Force, for this purpose it is understood that the gravitational force is described as

Where,
G = Gravitational Universal Force
Mass of each object
To solve this problem it is necessary to divide the gravitational force (x, y) into the required components and then use the tangent to find the angle generated between both components.
Our values are given as,

Applying the previous equation at X-Axis,

Applying the previous equation at Y-Axis,

Therefore the angle can be calculated as,

Then in the measure contrary to the hands of the clock the Force in the particle 3 is in between the positive direction of the X and the negative direction of the Y at 71 ° from the positive x-axis.