Answer:
A
Step-by-step explanation:
This is exponential decay; the height of the ball is decreasing exponentially with each successive drop. It's not going down at a steady rate. If it was, this would be linear. But gravity doesn't work on things that way. If the ball was thrown up into the air, it would be parabolic; if the ball is dropped, the bounces are exponentially dropping in height. The form of this equation is
, or in our case:
, where
a is the initial height of the ball and
b is the decimal amount the bounce decreases each time. For us:
a = 1.5 and
b = .74
Filling in,

If ww want the height of the 6th bounce, n = 6. Filling that into the equation we already wrote for our model:
which of course simplifies to
which simplifies to

So the height of the ball is that product.
A(6) = .33 cm
A is your answer
Answer:
A. {-9, -4, -1}
Step-by-step explanation:
Every number on the f(x) side is the domain which is the input numbers.
If you have any additional questions feel free to ask me or your teacher so you can really master what you're learning. :)